
* Copyright 2015 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or

promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted

component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of

scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this

information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be

reposted without the explicit permission of the copyright holder. Published version is available at https://doi.org/10.1109/Trustcom.2015.483

Forensic Collection and Analysis of Thumbnails in Android*

Ming Di Leom1 Christian Javier D’orazio1 Gaye Deegan2 Kim-Kwang Raymond Choo1

leomy009, dorcj002@mymail.unisa.edu.au Gaye.Deegan, Raymond.Choo@unisa.edu.au

1Information Assurance Research Group, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia.
2School of IT & Mathematical Sciences, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia.

Abstract
JPEG thumbnail images are of interest in forensic investigations as images from the

thumbnail cache could be intact even when the original pictures have been deleted. In

addition, a deleted thumbnail is less likely to be fragmented due to its small size. The focus of

existing literature is generally on the desktop environment. Considering the increasing

capability of smart mobile devices, particularly Android devices, to take pictures and videos

on the go, it is important to understand how thumbnails can be collected from these devices.

In this paper, we examine and describe the various thumbnail sources in Android devices and

propose a methodology for thumbnail collection and analysis from Android devices. We also

demonstrate the utility of our proposed methodology using a case study (e.g. thumbnails

could be recovered even when the file system is heavily fragmented). Our findings also

indicate that collective information obtained from the recovered fragmented JPEG image

(e.g. metadata) and the thumbnail could be akin to recovering the full image for forensic

purposes.

Keywords
Android forensic, forensic recovery, mobile forensics, thumbcache, thumbnail recovery

1. Introduction

Thumbnail is smaller representation of a larger media file such as picture and video, and has

been used as evidence in a number of court cases in jurisdictions such as Australia, United

Kingdom and United States. Quick, Tassone and Choo (2014, pp.1-2) also noted that ‘[i]n

many cases, it is the thumbnail image alone that has been the evidence presented to court’. As

the resolution of digital cameras increases, picture size and storage requirement also

increases. To reduce the storage requirement and increase efficiency, operating system

generally renders the thumbnail cache when a user is browsing the computer. Similarly,

thumbnail cache can also facilitate forensic and digital investigations as the investigators can

view thumbnail images significantly faster than the original images.

In this paper, we describe a thumbnail forensic recovery process for Android devices. We

then demonstrate the utility of our process even in the event that the file system is no longer

accessible and that we could link the recovered thumbnail and the associated fragmented

deleted picture (in JPEG format) taken using the Android device’s camera. In other words,

the investigator would have the picture (albeit in lower quality) and the associated metadata

(e.g. identifying previous whereabouts or accomplice of a terrorist suspect and determine

whether a child pornography suspect possess illegal content).

1.1 Related work

In a recent work, Quick, Tassone and Choo (2014) provide a detailed overview of thumbnail

stores for Windows platform (from Windows 95 to Windows 8) as well as the tools that can

be used to view the thumbnails. The researchers also proposed an operational methodology

for thumbnail analysis and a reporting and visualisation methodology and software prototype

to present the findings from the thumbnail analysis. Other related work includes Matt (2012)

which demonstrates how to recover thumbnail cache from Windows Vista machines and

Hurlbut (2005) on machines running Windows Me to Windows XP using FTK (AccessData).

Other researchers (Parsonage 2012; Morris, SLA 2013) have also investigated thumbnail

cache behaviour in Windows Vista and 7, and Windows 7 and Ubuntu Linux machines

respectively. They demonstrate how the thumbnail is generated under user interaction with

the OS. In one of few work for mobile devices, Hoog (2011) presented their preliminary

study of thumbnail cache folder in Android devices, which required the file system to be

accessible. Hoog’s study did not include thumbnail cache behaviour, specifically how user

action affects the creation of thumbnail cache. Existing thumbnail publications are

summarised in Table 1.

The need to have a detailed understanding of thumbnail cache structure in order to facilitate

automated extraction is highlighted by Hoog (2011). Existing literature generally focus on

desktop operating system (OS). Considering the increasing ubiquity of mobile devices and

that they are becoming a popular alternative to desktop, this paper aims to contribute to a

better forensic understanding of thumbnail cache on Android devices.

Publications Platform

Hurlbut (2005) Windows Me to Windows XP

Hoog (2011) Android

Matt (2012) Windows Vista

Parsonage (2012) Windows Vista and 7

Morris (2013) Windows 7, Ubuntu Linux, and Kubuntu Linux

Quick et al. (2014) Windows 95 to Windows 8

Table 1: Thumbnail publications by platform.

1.2 Contribution and outline of paper

In this paper, we propose a methodology for thumbnail collection and analysis from Android

devices. We then demonstrate the utility of the methodology using a case study. In our case

study, we first determine the characteristics of thumbnail in order to customise existing file

carving tools to recover thumbnail from the forensic image in an efficient manner (e.g. by

reduce the number of irrelevant files). Previous (Siciliano 2012; Honan 2013; The Guardian

2013; McColgan 2014; Schwamm 2014; Simon & Anderson 2015) have shown that

performing factory reset on Android devices does not remove the actual content of data.

Therefore, we demonstrate that it is possible to recover thumbnails even after the photos have

been deleted, a factory reset has been undertaken by a user, or a corrupted file system.

Previous studies (Morris, S & Chivers 2011; Parsonage 2012; Quick, Tassone & Choo 2014)

focusing on thumbnail cache behaviour in Microsoft Windows platform have shown

thumbnail can be created in thumbcache without the original picture being viewed. This

implies presence of thumbnail could not prove a user has knowledge of original picture in

question. However, our experiment in Android platform (described in Section 4.3 How user

actions affect creation of thumbnail cache?) shows that a certain size of thumbnail is only

created after the picture has been viewed. This could possibly indicate that the user knew the

existence of the picture in question.

The remainder of this paper is organised as follows. Section 2. presents an overview of

Android forensics. Section 3. A methodology for thumbnail collection and analysis from

Android devices outlines our proposed thumbnail forensic collection and analysis

methodology for Android devices. We then demonstrate the utility of the process in Section

4. . In Section 5. Discussion, we discuss the potential limitations of using thumbnail in

forensics and our process. The last 6. Conclusion and future work concludes this paper and

outlines future research opportunities.

2. Background

Android mobile devices typically consist of several partitions. Partitioning scheme may differ

between Android devices due to vendor customisation but there are generally six partitions

and each partition stores data specific to a particular function (see Table 2). This information

is potentially useful to a forensic investigator as it allows the forensic investigator to focus

only on the relevant partition during the evidence identification process. The majority of the

user’s data is stored in the “user data” (/data) partition, internal SDcard, and cache partitions.

Name Mount point Description

Recovery N/A Recovery mode

Boot N/A Linux kernel

System /system Operating system files, system applications

Cache /cache Cache files

User data /data User installed application

Internal SDcard (Media) /mnt/sdcard

/storage/sdcardX

/data/media/X

User-accessible storage to store media files.

Table 2: Partition layout of typical Android device. Adapted from Vidas, Zhang and Christin (2011)

The /data partition stores user personal information (e.g. Google account), user-installed

applications, and updated versions of built-in applications. During a factory reset, both the

data and cache partitions are formatted and, optionally, the internal SDcard (also known as

the media partition). Generally, the internal SDcard is the largest partition and stores media

files (e.g. songs, pictures, and videos), which are accessible from a desktop via a USB

connection.

Prior to Android 3.0 (Honeycomb), /data and media were two separate partitions. The media

partition generally uses FAT32, which can be mounted and accessed from a host computer

through USB Mass Storage (UMS), just like a USB flash drive. The problem with this layout

is that the /data partition has a limited size since the majority of the storage space is allocated

to the media partition. This limits the amount and size of applications a user can install. In

Android Honeycomb, media becomes a subfolder in /data as /data/media, rather than a

separate partition. A user needs to access the Android device from a host computer through

the Media Transfer Protocol (MTP). Android 4.2 introduced multi- user support, where each

user is assigned a subfolder in /data/media. The default user is assigned to /data/media/0.

Each new user is subsequently assigned to /data/media/10, /data/media/11, /data/media/12

and so on.

Data recovery can be undertaken using logical or physical acquisition techniques. The former

allows the extraction of allocated data still accessible on the file system. The latter directly

accesses the raw data in the storage medium without attempting to reconstruct the file system,

as the file system usually deletes the file location (unallocated) without deleting the actual

content, for efficiency (i.e. it is significantly faster to remove the link to the file location than

the actual content).

3. A methodology for thumbnail collection and analysis from Android

devices
We now present our proposed process of recovering thumbnail files from Android device

(Figure 1) and map it to the digital forensic framework (McKemmish 1999).

Identify

In this step, we identify the potential evidence and the sources. In the case of thumbnail

recovery, an investigator will need to identify the locations of the thumbnails and, if possible,

the thumbnail size as knowing the size allows one to customise the file carving tool with

better accuracy. We can determine the thumbnail resolution from previously recovered

thumbnail generated by an Android device with similar camera specification (i.e. megapixel

count). From the thumbnail resolution, we can estimate the average size of the thumbnail.

Finding the average size allows us to customise the file carving tool. It is also necessary to

check whether the device has been rooted, which will inform actions to be undertaken in the

next step.

Figure 1: Thumbnail forensic recovery process for Android devices

Preserve

Wherever possible, a bit-for-bit copy of the flash memory should be undertaken. Otherwise,

the forensic investigator could choose to acquire bit-for-bit copy of specific partition such as

internal SDcard that are more likely to store thumbnail. The forensic image is hashed to

ensure integrity throughout analysis. Bit-for-bit copy requires the Android device to have

root access. Process of rooting often involves unlocking the bootloader and doing so will

wipe the /data partition. However, in that scenario, the partition is not securely wiped and its

previous content is recoverable through physical extraction (Wartickler 2012). Whether

rooting is considered tampering with the evidence and consequently affect its admissibility is

not part of discussion in this paper. Nonetheless, rooting may not be possible in certain

model. In that case, thumbnail cache (thumbcache) files such as imgcache.0 could be

logically extracted and preserved just like a cloned image.

Analyse

File carving tool can be used to locate thumbnail within the forensic image. The software

should be customised according to the file signature of thumbnail file. This is necessary to

reduce the number of irrelevant files recovered for easier analysis. This technique could also

be employed to extract thumbnail from the recovered thumbcache file found in Android

device. The recovered thumbnail can then be used to match existing fragmented file.

Presentation

Information gathered during analysis stage are documented and presented. This could

comprise; (1) thumbnail picture which matches an existing file, (2) thumbnail picture which

matches fragmented file, or (3) standalone thumbnail picture, in a report.

4. Case study

In this section, we conduct three case studies based on methodology. First case study focus

on logical extraction of thumbnail. Second case study focus on physical extraction of

thumbnail. Third case study focus on the behaviour of the thumbnail cache. Prior conducting

these case studies, we performed factory reset beforehand. USB debugging is enabled in the

device system settings. The Android mobile device is also rooted to access the raw data. USB

debugging is required for forensic acquisition conducted on first and second case studies

(Section 4.1 Logical extraction of thumbnail & 4.2 Physical extraction of thumbnail cache).

Below table (Table 3) outlined the hardware and software specification.

Name/Model Description Version/Specification

Samsung Nexus S

I9020T

Mobile device Android 4.1.2 (rooted and USB debugging

enabled)1

BusyBox (installed in

mobile device)

Collection of Unix

tools (e.g. nc, dd)

1.23.0, installed using BusyBox installer for

Android v25 (Stericson 2014)

Gallery Default Android

media gallery app

1.1.40000

Dell Optiplex 960 Workstation Intel Core 2 Quad Q9400 (2.66Ghz quad-

core), 4GB RAM, 150GB hard disk,

Windows 7 64-bit

Oxygen Forensic Suite

2014 (Oxygen

Forensics)

Forensic tool 6.2.1.103 (Trial)

Netcat/nc (Pond 2004) Forensic tool 1.11

1 More than 2 years of usage. Previously equipped with custom ROM Android 4.4. Downgraded to stock

Android 4.1.2 (Google 2014a).

HxD (Hörz 2009) Hex editor 1.7.7.0

Scalpel (machn1k 2013) File carver 2.0

ExifTool (Harvey 2014) JPEG EXIF

metadata viewer

9.69

Table 3: Hardware and software specification

Below (Table 4) shows the file system type of each partition in the test device:

Name File system

Recovery YAFFS2

Boot

Cache

System EXT4

User data

Internal SDcard/Media FAT32

Table 4: Partition's file system

4.1 Logical extraction of thumbnail

In this case study, we capture 10 pictures using the mobile device as baseline pictures (Table

V: File No. 21-30). Pictures from Gallery app are viewed and then deleted. After that, the

partition /storage/sdcard0 where pictures are most likely to be stored is duplicated into our

workstation using

$ adb pull sdcard/

We identified the locations of the thumbnail cache (thumbcache) files, namely the thumbnail

is embedded inside a JPEG file, and for thumbnails generated and used by Gallery app, the

cache files can be found at /sdcard/Android/data/com.google.android.gallery3d.cache/img

cache.0.

No. Filename File size Resolution

21 IMG_20150117_175812.jpg 1,860 1920 x 2560

22 IMG_20150117_175852.jpg 1,593 1920 x 2560

23 IMG_20150117_175911.jpg 1,937 1920 x 2560

24 IMG_20150117_175930.jpg 1,281 2560 x 1920

25 IMG_20150117_175950.jpg 2,518 1920 x 2560

26 IMG_20150117_180001.jpg 2,524 1920 x 2560

27 IMG_20150117_180024.jpg 1,083 1920 x 2560

28 IMG_20150117_180050.jpg 1,393 1920 x 2560

29 IMG_20150117_180218.jpg 2,014 1920 x 2560

30 IMG_20150117_180249.jpg 1,379 1920 x 2560

Table 5: Baseline pictures

Thumbcache Viewer (Kutcher 2014a) and Thumbs Viewer (Kutcher 2014b) could not detect

any thumbnail in File No. 31 since in both cases the software is designed to support

thumbnail cache generated by Microsoft Windows OS, thus the tools are incompatible. We

proceed to inspect File No. 31 using HxD, a hex editor. Figure below (Figure 2) shows file

structure of sample thumbcache file (imgcache.0). The first 4 bytes (red-highlighted) contains

header information as identifier for thumbcache file. The next 64 bytes (blue-highlighted)

contains description of the following thumbnail. The description contains filename as

identifier of the thumbnail inside the thumbcache. Note this is different from filename of the

original picture. Next is the actual thumbnail data (green-highlighted). The size varies even

with similar resolution. It includes header and footer. After that is description for the next

thumbnail and its thumbnail data (as portrayed in Table 6 below). Thumbcache file does not

have a unique footer value, rather the value is footer value of the last thumbnail.

Figure 2: Internal structure of thumbcache file (imgcache.0).

Thumbcache

header

Thumbnail 1

description

Thumbnail 1

data

Thumbnail 2

description

Thumbnail 2

data
Table 6: Internal structure of thumbcache file (imgcache.0) with multiple thumbnails.

We attempt to extract a thumbnail (File No. 32) by manually searching the header (FF D8 FF

E0) and the footer (FF D9). We could recover the rest of the thumbnails manually using the

hex editor, but file carving tool can help to automate this process. So, we extract the rest of

the thumbnails using Scalpel, a file carving tool due to its ease of configuration and the

customisation available fits our purpose.

Scalpel can be used through this command:

C:\>scalpel –v –c conf/scalpel.conf -o output_directory forensic_image

Where:

 -v = verbose

 -c = configuration file

 -o = directory to store recovered files

The default configuration file is located at conf folder named scalpel.conf. The configuration

file contains rules on file carving in each line. Default configuration had all the rules

commented out so running Scalpel using that configuration will not recover anything. Each

rule describes the file extension, whether the header and footer are case sensitive, the

minimum and maximum file size, and the header and footer value.

In this case, we use following rule:

jpg y 1000: 500000 \xff\xd8\xff\xe0 \xff\xd9

• jpg File extension.

• y Header and footer is case sensitive. Use ‘n’ for case insensitive.

• 1000: 500000 Carve only file size between 1,000 bytes to 500,000 bytes. Ignore file

outside of this range.

• \xff\xd8\xff\xe0 Header value. \x is the representation for hexadecimal character. Use

\? to match any byte value (wildcard).

• \xff\xd9 Footer value. Optional.

Judging by the thumbnail resolution (VGA), we estimated the thumbnail size should be at

least 1KB and less than 500KB. By using the above rule, we managed to extract 20

thumbnails. From the result (Table 7), we can observe that the Gallery app generate VGA

(640 x 480) sized and 200 x 200 thumbnails for every picture.

We notice although File No. 21-30 are taken in portrait orientation (except File No. 24)

(Table 5), all thumbnails are in landscape (Table 7 & Table 8).

A VGA resolution thumbnail that matches with its 200 x 200 resolution counterpart (Table 8)

would have similar file name (/local/image/item/00+1) except for the last number

(/local/image/item/00+1). Value “1” denotes the thumbnail is VGA resolution, while “2”

denotes 200 x 200 resolution (described in more details in Figure 2).

No. Image resolution Filename File size

31 N/A imgcache.0 972.0

32

640 x 480

/local/image/item/24+1 83.9

33 /local/image/item/25+1 71.3

34 /local/image/item/26+1 83.5

35 /local/image/item/27+1 62.8

36 /local/image/item/28+1 129.2

37 /local/image/item/29+1 157.5

38 /local/image/item/30+1 39.8

39 /local/image/item/31+1 46.4

40 /local/image/item/32+1 114.8

41 /local/image/item/33+1 55.9

42

200 x 200

/local/image/item/33+2 7.7

43 /local/image/item/31+2 6.7

44 /local/image/item/32+2 16.8

45 /local/image/item/30+2 6.7

46 /local/image/item/29+2 20.8

47 /local/image/item/28+2 18.7

48 /local/image/item/27+2 11.4

49 /local/image/item/26+2 12.3

50 /local/image/item/25+2 11.8

51 /local/image/item/24+2 12.0

Table 7: Thumbnails extracted from imgcache.0 file.

Original (File No.) Thumbnail (File No.) Thumbnail (File No.)

21 32 51

22 33 50

23 34 49

24 35 48

25 36 47

26 37 46

27 38 45

28 39 43

29 40 44

30 41 42

Table 8: Original file and its thumbnail.

In order to extract the embedded thumbnail from a JPEG file, we use ExifTool. Although

such tool is available, the manual method employed in extracting thumbnails from File No.

31 can work in this case as well.

The command used to extract thumbnail is as follows:

C:\> exiftool –b –ThumbnailImage input > output

*When using under Microsoft Windows, rename “exiftool (-k).exe” to “exiftool.exe”.

Where:

-b = Output the requested data in binary format without tag names or descriptions.

-ThumbnailImage = Read thumbnail image

input = The location of original image.

output = The location to save the extracted thumbnail in .jpg extension.

Below (Table 9) shows the information on the extracted thumbnail stored in the 10 baseline

pictures (File No. 21-30).

No. File size (KB) Resolution

52 13.1

320 x 240 53 13.4

54 13.4

55 13.0

56 21.9

57 27.6

58 7.0

59 6.5

60 21.4

61 7.8

Table 9: Thumbnails extracted from original JPEG file.

4.2 Physical extraction of thumbnail cache

This section demonstrates method to physically extract the thumbnail from the raw forensic

image. We first identify the /media2 partition path (highlighted):

C:\> adb shell

shell@android:/ $ su

root@android:/ # ls -l /dev/block/platform/s3c-sdhci.0/by-name

lrwxrwxrwx root root 2015-01-17 10:15 media -> /dev/block/mmcblk0p3

lrwxrwxrwx root root 2015-01-17 10:15 system -> /dev/block/mmcblk0p1

lrwxrwxrwx root root 2015-01-17 10:15 userdata -> /dev/block/mmcblk0p2

We then create forensic image of that partition using following commands:

C:\> adb forward tcp:5555 tcp:5555

C:\> adb shell

shell@android:/ $ su

root@android:/ # nc -l -p 5555 -e dd if=/dev/block/mmcblk0p3

(Note3)

On another command prompt:

C:\> adb forward tcp:5555 tcp:5555

C:\> nc 127.0.0.1 5555 > mmcblk0p3.raw

We then use Scalpel to recover thumbnails from the forensic image. We customise the rule to

target thumbnails only based on the results gathered in Section 4.1 Logical extraction of

thumbnail (Table 7). We inspect the header information and determine the maximum file size

2 The partition is also mounted as /storage/sdcard0, same partition used in Section 4.1 Logical extraction of

thumbnail.
3 nc and dd are installed through BusyBox.

of the thumbnails. The purpose is to determine the parameters that will be used in file

carving. Our results show different type of thumbnail has different header value starting from

4th byte. Table 10 below illustrate the difference. Do note the header value for thumbnail

cache shown in the table is not the header value of the thumbcache file, but rather the

individual thumbnail stored inside the file.

Type Header Footer Maximum file size

Thumbnail stored in thumbcache file FF D8 FF E0 FF D9 157.5 KB

Embedded thumbnail in JPEG file FF D8 FF DB 27.6 KB

Table 10: Header value and file size of thumbnail.

Based on the Table 10, we customise the rule to be as follows:

#1 rule
jpg y 1000:500000 \xff\xd8\xff\xe0 \xff\xd9

#2 rule

jpg y 1000:50000 \xff\xd8\xff\xdb \xff\xd9

The first rule (#1) is to recover thumbnails from thumbnail cache file. 1KB is used as

minimum size and 500KB is used as maximum size. The second rule (#2) is to recover

embedded thumbnail. 1KB is used as minimum size and 50KB is used as maximum size.

Below (Table 11) shows the result of the thumbnails recovered.

Rule Thumbnail type Thumbnails

recovered

Percentage

#1 200 x 200 resolution thumbnail in thumbcache 10/10 100%

VGA resolution thumbnail in thumbcache 3/10 (9/10 if include

fragmented

thumbnail)

30%

#2 Embedded thumbnail in JPEG file 10/10 100%

Table 11: Recovery result.

The results show #2 rule is very effective at recovering thumbnails. The rule managed to

recover thumbnail of all the test files (File No. 1 to 10). #1 rule also managed to recover all

200 x 200 resolution thumbnails of all the test files, but it is less successful on VGA

resolution thumbnail. However, we still managed 90% if fragmented thumbnail is included.

This shows larger thumbnail is more likely to be fragmented. Nevertheless, the overall result

shows that thumbnail is significantly less likely to be fragmented compared to original image.

4.3 How user actions affect creation of thumbnail cache?

Previous study (Hoog 2011) did not investigate how user action would affect creation of

thumbnail cache. This section identifies the behaviour of the thumbcache when user interacts

with the OS. To establish the behaviour of the Android thumbnail cache it is necessary to

perform a variety of experiments; the experiments establish the way the thumbnail is

generated based upon user activity. Prior to experiments in this section, the Android device is

factory reset to clear the thumbcache. After factory reset, the device is connected to Wi-Fi

and signed in with Google account. No third-party application nor any update are installed

throughout this section. After each experiment, thumbcache file (located at

/sdcard/Android/data/com.google.android.gallery3d.cache/imgcache.0) is copied to our workstation for

analysis.

Experiment Result

1 Take 10 pictures using default Camera app. Found 8 VGA-sized thumbnails.

2 Launch Gallery app. Previous thumbnails plus a 200x200

thumbnail.

3 Open the “Camera” (/sdcard/DCIM/Camera)

folder.

Previous thumbnails plus 9 200x200

thumbnail.

4 View first picture. Previous thumbnails plus 2 VGA-sized

thumbnails.

5 View first to fifth picture. No difference.

6 View first to tenth picture. No difference.

7 Delete 5 pictures in odd number. No difference.

8 Delete the remaining 5 pictures. No difference.

9 Take 5 pictures. Previous thumbnails plus 4 VGA-sized

thumbnails.

10 Copy 31 pictures into “Pictures”

(/sdcard/Pictures) folder.

No difference.

Table 12: Thumbcache behaviour in Android.

The experiments result (Table 12) shows VGA-sized thumbnail is generated when the picture

is snapped but not for all pictures. When the gallery app is launched, a smaller size (200x200)

thumbnail is generated. This thumbnail functions as the camera folder “cover”. When the

folder is opened, all pictures are shown in “album view”, and at the same time the remaining

200x200 thumbnails of the 10 pictures are generated. The 2 remaining VGA-sized thumbnail

is only generated after viewing the first picture. The thumbnail is not deleted even though the

original image has been removed. No thumbnail is generated when there is new pictures is

saved, that are not taken by the camera.

The implication of the results above is the possibility of using thumbnail as indication to

determine whether the picture has been viewed or not.

5. Discussion

Recovered thumbnail can provide valuable visual clue to investigator. It can be matched with

its original picture, especially the original picture’s metadata. The metadata is still intact even

when the original picture is heavily fragmented, it still contains complete Exchangeable

image file format (Exif) (Tachibanaya 1999) metadata. This is demonstrated in the following

experiment. We take 10 pictures (File No. 1-10) using the mobile device and then perform

physical acquisition of the mobile device using Oxygen Forensic Suite, a forensic tool. We

attempt to recover them from the forensic image through following process:

1. Search for the first 8-byte value of the header in hexadecimal form of the intended

picture. Mark the location the first byte of the found 8-byte header as

START_OFFSET.

2. Select data block with the same value as the size of original picture (LENGTH=size

of original picture).

3. Copy out the selected block of data.

4. Save the copied block of data with file extension “.jpg”.

5. Inspect the saved file using Windows Photo Viewer.

6. Verify MD5 hash of original and recovered picture.

We managed to recover File No. 1, 2, 7, 8, and 9 completely. The rest (File No. 3, 4, 5, 6, and

10) are fragmented (Table 13). In other words, out of 10 pictures, only half is not fragmented.

No. Recovered No. Original

13

3

14

4

15

5

16

6

20

10

Table 13: Recovered fragment and its original.

We then use ExifTool to determine existence of Exif metadata in File No 15. The results

show that although heavily fragmented JPEG could only provide very limited visual clue but

at least the EXIF metadata is not likely to be fragmented, thus recoverable. Below show

excerpt of EXIF metadata in File No. 15 (the most fragmented among those shown in Table

13).

C:\>exiftool 15.jpg

ExifTool Version Number : 9.69

File Name : 15.jpg

Directory : C:\Recovered fragment

File Size : 921 kB

File Type : JPEG

MIME Type : image/jpeg

Exif Byte Order : Little-endian (Intel, II)

Make : google

Camera Model Name : Nexus S

Orientation : Rotate 90 CW

Software : JZO54K

Modify Date : 2014:06:19 18:06:06

Y Cb Cr Positioning : Centered

Exposure Time : 1/33

F Number : 2.6

Exposure Program : Aperture-priority AE

ISO : 50

Exif Version : 0220

Date/Time Original : 2014:06:19 18:06:06

Create Date : 2014:06:19 18:06:06

By combining the metadata with a fully recovered thumbnail, these information are as

valuable as original picture, since it still shows similar visual information, only with lower

resolution. Example shown here, although a bank logo can be found in Figure 3, but it can

refers to any office tower of the bank. In contrast, Figure 4 although is smaller, the location

could be identified by the unique appearance of the shop on the left part. This can be further

confirmed with location data from the EXIF metadata.

Figure 3: (Simulated) Heavily fragmented picture.

Figure 4: Non-fragmented. (Resized to VGA resolution to simulate a thumbnail)

Due to the small size of the thumbnail, it is less likely to be fragmented. In the event that we

recover a fragmented thumbnail, it could still contain hints that could be used to identify the

location of the photo taken.For instance, a simulated fragmented thumbnail depicted in Figure

5 contains popular landmarks (Royal Malaysia Police Headquarter and Merdeka Square) on

the left part.

Using the size of the landmarks in the image, the distance from the landmark can be

estimated. The shop building on the right part has a unique roof which would be recognized

by individuals familiar with the locality. This could facilitate the investigation of, for

example, a terrorist by helping to determine the whereabouts of a suspect.

Figure 5: (Simulated) Fragmented thumbnail.

In cases such as child pornography investigations (Hillman, Hooper & Choo 2014), the

thumbnail could be used to determine the existence of illegal content on a device even if the

original images have been deleted. A thumbnail could also be used to determine the

authenticity of the original photo, and whether the photo has been modified (Kee & Farid

2010). This is because image manipulation programs usually do not update the thumbnail

after editing, leaving the original thumbnail still intact (Murdoch & Dornseif 2004).

6. Conclusion and future work

In this paper, we have described the location of thumbnail cache file “imgcache.0” and

technique to extract thumbnails from that file. We also describe the file structure of the

thumbcache file. We described the techniques to recover embedded thumbnail and the

property of the embedded thumbnail. We demonstrated those techniques are effective in

recovering thumbnail even when the file system is heavily fragmented. We also show the

possibility of fragmented JPEG still holding important metadata and when link to thumbnail,

is akin to recovering the full picture.

In this paper, we only demonstrated recovering thumbnail cache in Android generated by

Gallery app. In future, we hope to extend our research to other Android gallery apps such as

Photos app bundled with Google+ app (Google 2014b) and custom gallery apps shipped by

vendors. We also hope to extend our research to newer Android versions. We also

demonstrated the recovery method on a particular Android device. In theory, Android device

with similar camera specification should have similar thumbnail size as well, while Android

device equipped with camera that has higher resolution could result in larger thumbnail size.

Thus, we also hope to extend our research to more Android devices.

Instead of relying on manual matching, linking the thumbnail to original image can be

automated through computer algorithm to match the thumbnail to the fragmented JPEG. This

idea is similar to Guo and Xu (2011) but that work focus on using thumbnail to rearrange

JPEG fragments. There is also possibility of recovering fragmented thumbnail. However, we

need to evaluate the feasibility of such approach in future work.

Although our experiments in this paper are conducted on Android mobile device, we believe

that our proposed method could also apply to traditional desktop forensic. In Section 5.

Discussion, we show that our method works well on bi-fragmented JPEG. Bi-fragmented is

when a file is fragmented into two parts. Study (Garfinkel 2007) showed that it is the most

common type of fragmentation in hard disk, thus showing the potential of our proposed

method on desktop forensic.

References

AccessData Forencis toolkit, <http://accessdata.com/products/computer-forensics/ftk>.

Garfinkel, SL 2007, 'Carving contiguous and fragmented files with fast object validation',

Digital Investigation, vol. 4, pp. 2-12.

Google 2014a, Factory images for nexus devices, viewed 11 August 2014,

<https://developers.google.com/android/images>.

Google 2014b, Google+ for Android, Google Play Store, viewed 16 August 2014,

<https://play.google.com/store/apps/details?id=com.google.android.apps.plus>.

Guo, H & Xu, M 2011, 'A Method for Recovering JPEG Files Based on Thumbnail',

International Conference on Control, Automation and Systems Engineering, IEEE, pp. 1-4.

Harvey, P 2014, ExifTool, viewed 16 August 2014,

<http://owl.phy.queensu.ca/~phil/exiftool/>.

Hillman, H, Hooper, C & Choo, K-KR 2014, 'Online child exploitation: Challenges and

future research directions', Computer Law & Security Review, vol. 30, no. 6, pp. 687-698.

Honan, M 2013, Break out a hammer: You’ll never believe the data 'wiped' smartphones

store, Wired, viewed 19 April 2015, <http://www.wired.com/2013/04/smartphone-data-

trail/>.

Hoog, A 2011, Android Forensics: Investigation, Analysis and Mobile Security for Google

Android, Syngress.

Hörz, M 2009, HxD - Freeware Hex Editor and Disk Editor, viewed 13 August 2014,

<http://mh-nexus.de/en/hxd/>.

Hurlbut, D 2005, Thumbs DB files forensic issues, AccessData, viewed 28 August 2014,

<http://repo.zenk-

security.com/Techniques%20d.attaques%20%20.%20%20Failles/THUMBS%20DB%20FIL

ES%20FORENSIC%20ISSUES.pdf>.

Kutcher, E 2014a, Thumbcache Viewer, GitHub, viewed 16 August 2014,

<https://github.com/thumbcacheviewer/thumbcacheviewer>.

Kutcher, E 2014b, Thumbs Viewer, GitHub, viewed 16 August 2014,

<https://github.com/thumbsviewer/thumbsviewer>.

http://accessdata.com/products/computer-forensics/ftk
https://developers.google.com/android/images
https://play.google.com/store/apps/details?id=com.google.android.apps.plus
http://owl.phy.queensu.ca/~phil/exiftool/
http://www.wired.com/2013/04/smartphone-data-trail/
http://www.wired.com/2013/04/smartphone-data-trail/
http://mh-nexus.de/en/hxd/
http://repo.zenk-security.com/Techniques%20d.attaques%20%20.%20%20Failles/THUMBS%20DB%20FILES%20FORENSIC%20ISSUES.pdf
http://repo.zenk-security.com/Techniques%20d.attaques%20%20.%20%20Failles/THUMBS%20DB%20FILES%20FORENSIC%20ISSUES.pdf
http://repo.zenk-security.com/Techniques%20d.attaques%20%20.%20%20Failles/THUMBS%20DB%20FILES%20FORENSIC%20ISSUES.pdf
https://github.com/thumbcacheviewer/thumbcacheviewer
https://github.com/thumbsviewer/thumbsviewer

machn1k 2013, Scalpel-2.0, GitHub, viewed 15 August 2014,

<https://github.com/machn1k/Scalpel-2.0>.

Matt 2012, Analyzing Thumbcache, viewed 28 August 2014,

<http://escforensics.blogspot.com/2012/11/analyzing-thumbcache.html>.

McColgan, J 2014, Tens of thousands of Americans sell themselves online every day, AVAST

Software, viewed 10 July 2014, <https://blog.avast.com/2014/07/08/tens-of-thousands-of-

americans-sell-themselves-online-every-day/>.

McKemmish, R 1999, 'What is forensic computing?', Trends and Issues in Crime and

Criminal Justice, vol. 118, pp. 1-6.

Morris, S & Chivers, H 2011, An Analysis of the Structure and Behaviour of the Windows 7

Operating System Thumbnail Cache, University of Strathclyde, Glasgow, UK.

Morris, SLA 2013, 'An Investigation into the identification, reconstruction, and evidential

value of thumbnail cache file fragments in unallocated space', PhD thesis, Cranfield

University,, Shrivenham, Oxfordshire, UK.

Oxygen Forensics Oxygen Forensic® Suite - Mobile forensic software for cell phones,

smartphones and other mobile devices, viewed 10 August 2014,

<http://web.archive.org/web/20150312163430/http://www.oxygen-

forensic.com/en/products/oxygen-forensic-suite/features [archived]>.

Parsonage, H 2012, Under My Thumbs - Revisiting Windows Thumbnail Databases and Some

New Revelations About the Forensic Implications, viewed 28 August 2014,

<http://computerforensics.parsonage.co.uk/downloads/UnderMyThumbs.pdf>.

Pond, W 2004, netcat (Windows), viewed 14 August 2014,

<http://web.archive.org/web/20140725175856/http://www.securityfocus.com/tools/139

[archived]>.

Quick, D, Tassone, C & Choo, K-KR 2014, 'Forensic analysis of Windows thumbcache files',

Americas Conference on Information Systems, Association for Information Systems.

Schwamm, R 2014, 'Effectiveness of the factory reset on a mobile device', Naval

Postgraduate School, Monterey, California.

Siciliano, R 2012, I Found Your Data on That Used Device You Sold, McAfee, viewed 19

April 2015,

<http://web.archive.org/web/20130623083846/http://blogs.mcafee.com/consumer/i-found-

your-data-on-that-used-device-you-sold [archived]>.

https://github.com/machn1k/Scalpel-2.0
http://escforensics.blogspot.com/2012/11/analyzing-thumbcache.html
https://blog.avast.com/2014/07/08/tens-of-thousands-of-americans-sell-themselves-online-every-day/
https://blog.avast.com/2014/07/08/tens-of-thousands-of-americans-sell-themselves-online-every-day/
http://web.archive.org/web/20150312163430/http:/www.oxygen-forensic.com/en/products/oxygen-forensic-suite/features
http://web.archive.org/web/20150312163430/http:/www.oxygen-forensic.com/en/products/oxygen-forensic-suite/features
http://computerforensics.parsonage.co.uk/downloads/UnderMyThumbs.pdf
http://web.archive.org/web/20140725175856/http:/www.securityfocus.com/tools/139
http://web.archive.org/web/20130623083846/http:/blogs.mcafee.com/consumer/i-found-your-data-on-that-used-device-you-sold
http://web.archive.org/web/20130623083846/http:/blogs.mcafee.com/consumer/i-found-your-data-on-that-used-device-you-sold

Simon, L & Anderson, R 2015, 'Security Analysis of Android Factory Resets', Mobile

Security Technologies Workshop, IEEE, pp. 1-10.

Stericson, S 2014, BusyBox, Google Play Store, viewed 27 August 2014,

<https://play.google.com/store/apps/details?id=stericson.busybox>.

Tachibanaya, TZ 1999, Description of Exif file format, Personal Information Architecture,

MIT Media Laboratory, viewed 17 August 2014,

<http://www.media.mit.edu/pia/Research/deepview/exif.html>.

The Guardian 2013, Recycled mobile phones retain previous owner data, viewed 19 April

2015, <http://web.archive.org/web/20140529182505/http://www.theguardian.com/media-

network/partner-zone-infosecurity/mobile-phones-previous-owner-data [archived]>.

Vidas, T, Zhang, C & Christin, N 2011, 'Toward a general collection methodology for

Android devices', Digital Investigation, vol. 8, pp. S14-S24.

Wartickler 2012, [GUIDE] Internal Memory Data Recovery - Yes We Can!, XDA

Developers, viewed 3 December 2014, <http://www.xda-developers.com/android/restore-

galaxy-nexus-internal-memory-after-bootloader-unlock-wipe/>.

https://play.google.com/store/apps/details?id=stericson.busybox
http://www.media.mit.edu/pia/Research/deepview/exif.html
http://web.archive.org/web/20140529182505/http:/www.theguardian.com/media-network/partner-zone-infosecurity/mobile-phones-previous-owner-data
http://web.archive.org/web/20140529182505/http:/www.theguardian.com/media-network/partner-zone-infosecurity/mobile-phones-previous-owner-data
http://www.xda-developers.com/android/restore-galaxy-nexus-internal-memory-after-bootloader-unlock-wipe/
http://www.xda-developers.com/android/restore-galaxy-nexus-internal-memory-after-bootloader-unlock-wipe/

	Abstract
	Keywords
	1. Introduction
	1.1 Related work
	1.2 Contribution and outline of paper

	2. Background
	3. A methodology for thumbnail collection and analysis from Android devices
	4. Case study
	4.1 Logical extraction of thumbnail
	4.2 Physical extraction of thumbnail cache
	4.3 How user actions affect creation of thumbnail cache?

	5. Discussion
	6. Conclusion and future work
	References

