
Remote Wiping and Secure Deletion on Mobile Devices: A Review

Ming Di Leom,1 B.Sc.; Kim-Kwang Raymond Choo,2,1 Ph.D.; and Ray Hunt,3 Ph.D.

1University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia.

2Department of Information Systems and Cyber Security, University of Texas at San

Antonio, San Antonio, TX 78249-0631, USA.

3Department of Computer Science and Software Engineering, University of Canterbury,

Christchurch, New Zealand.

Abstract

Mobile devices have become ubiquitous in almost every sector of both private and

commercial endeavour. As a result of such wide-spread use in everyday life, many users

knowingly and unknowingly save significant amounts of personal and/or commercial data on

these mobile devices. Thus loss of mobile devices through accident or theft can expose users

– and their businesses – to significant personal and corporate cost. To mitigate this data

leakage issue, remote wiping features have been introduced to modern mobile devices. Given

the destructive nature of such a feature, however, it may be subject to criminal exploitation

(e.g. a criminal exploiting one or more vulnerabilities to issue a remote wiping command to

the victim’s device). To obtain a better understanding of remote wiping, we survey the

literature, focusing on existing approaches to secure flash storage deletion and provide a

critical analysis and comparison of a variety of published research in this area. In support of

our analysis, we further provide prototype experimental results for three Android devices;

thus, providing both a theoretical and applied focus to this paper as well as providing

directions for further research.

KEYWORDS: forensic science, remote wiping, secure deletion, flash storage, NAND non-

volatile flash memory, SSD (Solid State Drive/Disk)

This is the peer reviewed version of the following article: Leom, MD, Choo, K-KR & Hunt, R 2016,

‘Remote Wiping and Secure Deletion on Mobile Devices: A Review’, Journal of Forensic Sciences,

which has been published in final form at https://doi.org/10.1111/1556-4029.13203. This article may

be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of

Self-Archived Versions.

Mobile devices have become increasingly ubiquitous and no longer used only for making and

receiving phone calls. Examples of such usage include receiving and sending email and

instant messages, making VoIP calls, taking and uploading of photos and video clips, and

finding one’s way around using mapping apps; all of which results in an increasing amount of

data (and metadata such as geolocation) stored and transmitted from such devices. Due to the

size of these devices, they can be easily lost or stolen. For example, the number of mobile

devices reported lost or stolen every year include an estimated 150,000 in Australia in 2011

(1), and 30,000 in London alone in 2013 (2).

With the advent of cloud storage services (e.g. Dropbox, Apple's iCloud, and Google Drive),

mobile device users are able to synchronise the data stored on their devices to their cloud

storage accounts. There is, however, potential for information leakage should the account be

compromised (e.g. the compromising of several celebrities' online accounts (3, 4, 5) or when

the device is lost, stolen or compromised (e.g. via malware). Physical theft and loss of

devices are among the most common cause of data leakage in organisations according to the

2014 study by (6). The cost of the hardware and software due to lost or stolen devices is

generally less than the direct and indirect cost resulting from the leakage of the information.

In a study by (7), 50 mobile devices were intentionally “lost” and then monitored for any

access attempt, resulting in 96% of these devices being reportedly accessed by the finders of

these devices (perhaps due to the inherent curiosity of human nature). The study also

highlighted the difficulty for device owners to regain possession of the devices as only 50%

of the “lost” devices in this study were actually recovered even though the owner's contact

information was clearly shown on the device.

To mitigate the issue of data leakage due to lost or stolen devices, the remote wiping feature

has been introduced to modern mobile devices such as iOS, Android, Windows Phone and

BlackBerry devices. This feature allows the device owner to send a remote command to wipe

the contents on the lost or stolen device. Such a command has been referred to as “kill pill”

(8, p. 8) or “poison pill” (9, p. 57; 10, p. 3) in the literature.

The earliest implementations of this remote wiping feature were on Blackberry devices (11,

12) and the now defunct Microsoft Windows Mobile (succeeded by Windows Phone) (13, 14,

15) in 2005. It is not surprising as BlackBerry devices are known for their security features

and one of the first devices to be approved by government use (16, 17, 18). Remote wiping

was introduced to Apple’s iPhones in 2009 through a service known as “Find My iPhone”

(19). “Find My iPhone” service was initially only available to the now defunct MobileMe

(replaced by iCloud and discontinued from June 2012 (20) subscription. It was not until the

release of iOS 4.2 released in November 2010 (21) that “Find My iPhone” service became a

free service (22). In August 2013, Google introduced the remote wiping feature by way of the

Android Device Manager (ADM) to devices running Android 2.2 or above (23). This has

become an official feature of Android devices, which was previously only available to

Google Apps customers (24) or via a third-party app (e.g. Cerberus and SeekDroid).

Remote wipe functionality can be a very useful feature in helping to prevent information

leakage when a mobile device is no longer in the owner’s possession due to theft, robbery, or

simply misplaced. Given the destructive nature of this function, however, an attacker might

misuse this function by sending such commands to the normal users to cause serious

disruption. Thus, it is very important to ensure that the wipe command can only be triggered

by the owner or authorised person.

The purpose of this survey and the prototype experiment is to provide an in-depth

understanding of the current state of play. Once a mobile device has been remotely wiped, the

deleted data should be irrecoverable. Since the majority of the mobile devices found today

use flash storage, also known as NAND flash memory (25), we discuss how secure deletion

is addressed on this particular type of storage.

Remote wiping is one of several anti-theft methods for mobile device. Other anti-theft

methods include remote tracking, data loss prevention (DLP) systems deployed in enterprise

environments, and tools that activate self-destruction upon predetermined conditions. In this

survey, we limit our discussion to systems that wipes itself only when the user triggers it.

One common approach to mitigating data leakage is through storage encryption (i.e.

encrypting of data-at-rest on the device). In mobile device, storage encryption has been

available to BlackBerry version 4.0 or above (26), Apple iOS since introduction of iPhone

3GS (27, 28), Windows Mobile 6.5 (29) and reintroduced back in Windows Phone 8 (30, 31).

Storage encryption has also been available to Android device users version 3.0 (Honeycomb)

(32). Google initially announced that all devices shipped with version 5.0 (Lollipop) would

have storage encryption enabled by default (33). Due to performance issue (34), it is not

enabled on every new Lollipop device (35), despite the optimisations implemented later (36,

37, 38). Despite the initial announcement, storage encryption was never made mandatory for

existing device upgrading to Lollipop. In our prototype experiments to be described in “Case

Study on Android Approach” section, we will, therefore, not use encryption on our Lollipop

device – the Motorola Moto G, as it is not enabled by default.

Prior to version 4.4 (KitKat), the encryption key was stored in flash memory and encrypted

with a weak key derivation function (KDF), PBKDF2 with 2,000 iterations only. This made

extraction and brute forcing the encrypted key fairly trivial. KitKat replaced the KDF with

scrypt – a password-based key derivation function, which was specifically designed to make

it costly to perform large-scale custom hardware attacks by requiring large amounts of

memory and thus making brute forcing more expensive (39). On Lollipop, the key is

encrypted with a master key that is not stored in flash memory and cannot be extracted even

with root access (40). This has made unauthorised access to encrypted flash memory much

more difficult.

However, no matter how secure the key is, existing law can compel a person to surrender the

key (e.g. 41, 42). There is also a misconception that secure deletion is unnecessary when

storage encryption is available since all the data is secured. Secure deletion is a condition

where an “adversary is given access to the system but not able to recover the deleted data

from the system” (43, p. 301). However, cryptography is only effective due to computational

cost (44) given the best cryptanalysis tools currently available. Given advances in

cryptanalysis and quantum cryptography, there is no guarantee that the data resided even in

encrypted form, could not be deciphered by an adversary in the near future. Any future

vulnerability(ies) in the device hardware or software may be exploited by an adversary to

gain unauthorised access to the decryption key. Thus, secure deletion methods that can ensure

deleted data removed from storage might still be relevant is also discussed in this paper.

In this paper, we located 15 patents and 18 academic publications published in English

between November 1999 and June 2014. On the remote wiping topic, materials were located

using Google Scholar (including Google Patents) and academic databases such as

ScienceDirect, ACM Digital Library, IEEE, and Springer using search terms such as remote

(wipe OR wiping), (sanitize OR sanitization) mobile phone, secure (erase OR delete) (flash

OR NAND).

Past surveys on secure deletion (43, 45) investigated two common types of non-volatile

memory, namely; magnetic hard drive and flash memory. Our discussion in “Secure Flash

Storage Deletion” section, however, focuses on flash memory only. Similar to (43), our

discussion on secure deletion does not include information deletion – which encompasses

searching and removing all traces of some information. There are two approaches to secure

deletion, namely; data overwriting or encryption, and physical destruction (e.g. disk crusher,

degaussing, incineration) (46). The main difference is that the second approach will render

the drive unusable; thus, irrecoverable (47) while the first approach does not. Our discussion

is, therefore, limited to the first approach and neither does it focus on any specific data

storage mechanism such as database or cloud storage.

This work is organised as follows. “Reviews of Remote Wiping and Secure Flash Storage

Deletion” section reviews existing approaches to remote wiping, and in particular, secure

deletion techniques. This section also includes a prototype experiment on remote wiping

using three Android devices. “Discussion” section discusses the limitation of existing

approaches and finally, “Concluding Remarks” section concludes the paper and outlines

potential future work.

Reviews of Remote Wiping and Secure Flash Storage Deletion

General Review of Remote Wiping

In this section, we discuss relevant publications on remote wiping which include eight patents

and five academic publications.

The remote wiping process (Fig. 1) can generally be described as follow:

1. A user enrols with the remote wiping system maintained by an organisation. When the

mobile device is lost, the user reports this to the same organisation and requests for

the mobile device to be wiped.

2. The organisation sends the wiping command to the intended mobile device.

Depending on the transmission channel, the command may be sent through a wireless

access point (AP) using an Internet connection, or via a traditional 3G/4G mobile

communication channel.

3. Upon receiving the wipe command, the mobile device erases the data.

Table 1 provides a summary of the security properties for the relevant references and these

are further illustrated in Fig. 1.

Authenticate Reporter

A system should verify the identity of the reporter and the device’s owner when a mobile

device is reported lost or stolen. This can be done through information known only to the user

(e.g. account number, address, and last bill number). Existing authentication methods

considered by the literature are summarised in Table 2.

Brown et al. (49) considered only the authorisation level to determine the data type that the

reporter or any person who initiate the remote wipe, is permitted to wipe. The proposed

scheme did not indicate any means of authenticating the identity of the reporter.

Several high-profile hacks (3, 4, 61, 62) have demonstrated that using a secret question or

personal identifiable information alone is not sufficient to authenticate a person. The victim’s

account may be compromised because an adversary is able to answer a secret question by

supplying publicly available information deduced from the Internet. Those incidents could

have been prevented with two-factor authentication.

Nearly half of the proposals specified more than one mechanism for authenticating the

reporter but they did not consider multi-factor authentication. Of these proposals, only (56)

proposed inclusion of two-factor authentication even though it was not explicitly indicated in

the original proposal. In the proposal of (56), the authentication process involves two steps;

firstly the reporter submits personal identifiable information to identify themselves to the

service provider, then they provide a PIN code to be verified by the mobile device. Thus, it

can be considered as two-factor authentication, even though the authentication is performed

by two entities; service provider and mobile device.

Authenticate Origin of Wipe Command

When receiving the wipe command from any channel (e.g. 3G/4G channel or web server via

the Internet), the mobile device should check whether the source is authorised to send the

command or instruction.

Existing literature generally prefers the use of public key cryptography. Pretty Good Privacy

(PGP) is one such popular encryption system - a sender first creates a digital signature by

hashing the message and encrypts the hash with its private key to sign the message. The

sender then encrypts the signed message with the recipient’s public key. Only the recipient

can decrypt the message with its private key and verify the message using the sender’s public

key.

Onyon (54) suggested storing the sender’s public key when enrolling into the remote wiping

system. Brown et al. (49) and Gajdos & Kretz (55) assumed the sender’s public key has been

stored on the mobile device during manufacturing. Angelo et al. (48) suggested a signature-

based approach whereby the sender encrypts the message with the recipient’s private key.

The signed message can then be decrypted by the recipient using its own public key.

Authentication can also be established using a shared code between the sender and the

recipient. In SSL/TLS, for example, a symmetric key is exchanged using public key

cryptography. However, Brown et al. (49), Onyon et al. (54) and Gajdos & Kretz (55) did not

consider the need to protect the shared code. Without any protection, the shared code could

be exposed allowing an adversary to spoof as a valid sender or recipient.

Park et al. (57) and Yu et al. (56) proposed a mechanism to request a password from the

reporter, which will be sent with the wipe command. The mobile device authenticates the

password to determine the authenticity of the wipe command. But this mechanism could only

authenticate the reporter, since if a correct password is provided, then any server can send the

command, and the mobile device will simply accept it. Thus, this mechanism is considered to

be more suitable to authenticate the reporter. Additionally, it is important to consider the

response mechanism when dealing with an incorrect password. If there is no limit to the

number of failed attempts, this will allow an online brute-force dictionary attack. Therefore, it

is recommended that the system lock the account should the number of failed attempted

exceed a predetermined limit.

Kuppusamy et al. (58) proposed a system that checks the incoming telephone number of the

received SMS against trusted numbers. This is a failback mechanism when the message is not

secured through the authentication method proposed by Park et al. (57). Instead of using this

as a failback mechanism, the system should always check the incoming number as origin

authentication, with the trusted number set beforehand. This mechanism can reduce the

possibility of a replay attack (see “Replay Attack Mitigation” section) unless the number is

spoofed. Guo et al. (63) assuming the telephone number is checked separately and not

embedded inside the encrypted or encoded message.

Secure Wipe Command

The “wipe” command sent as a message or packet should be secured against sniffing to avoid

tampering. Surprisingly, only Brown et al. (49) considered encrypting the wipe command

despite the potential for the wipe command to be hijacked and modified.

Secure Delete

The wiping process should result in the wiped data being irrecoverable, and secure deletion is

discussed further in “Secure Flash Storage Deletion” section.

Brown et al. (49) and Onyon et al. (54) proposed overwriting the wiped data with zeroes,

ones, or random combination of them. Sennett and Daly (53) proposed permanent physical

self-destruction. Gajdos and Kretz (55) proposed self-destruction by overwriting the

firmware. Yu et al. (56) only mentioned the future possibility of incorporating a secure

deletion solution. Although the patent by Kenney (51) does not provide secure deletion, it

proposed a method to render data stored on the device inaccessible. The latter is similar to the

approach undertaken by Apple where data is ‘wiped’ by rendering all files cryptographically

inaccessible when the file system key used to encrypt the files is deleted (64).

The secure deletion method described in the patent by Brown et al. (49), and owned by

BlackBerry, Inc (formerly known as Research In Motion, RIM), is deployed on BlackBerry

devices. The pattern or process differs between the OS versions, type of storage, and type of

data (65, 66). The difference between “flash storage” and “user files” is that user files refer to

a portion of storage that allows user file-level access. Typical, “user files” is used to store

media files such as pictures and videos. “Flash storage” in this case includes the rest of user’s

data such as contacts, SMS, e-mail, calendar entries, etc (66, p. 45), but does not include the

operating system (OS). This level of wiping is also commonly known as a factory reset.

Ensure Wiping Operation is Completed

This feature if implemented ensures that the wiping process is completed successfully, even

when it is interrupted by switching off the mobile device as the process will resume once the

mobile device is switched back on. When a device is switched off, it would be challenging

for an adversary to gain access to the data stored on the device even though the wiping

process might be interrupted. Only Brown et al. (49) and Yu et al. (56) considered this aspect

in their approaches.

Acknowledge Source that Wipe is Completed

The lost mobile device informs the owner or the system operator that the wiping operation

has been completed successfully.

Kenney (51) suggested using a handshake, ACK or NACK (Negative ACK, also known as

NAK), or ping. Sennett and Daly (2013) suggested broadcasting a signal to indicate that the

mobile device has received a valid command and will proceed to execute the command. The

latter, however, does not specifically check that the mobile device has successfully completed

the task. Adusumalli (60) and Joe and Lee (59) suggested using SMS and “service complete

code” to confirm successful execution of command respectively.

Replay Attack Mitigation

If an adversary manages to capture the command, the adversary can send the same command

to another device to wipe it. In other words, the adversary can conduct a “Replay attack” by

replaying a previous request made by a reporter to wipe the new (replacement) device.

Angelo et al. (48) proposed using timestamp, non-repeating sequence number, and a

randomly generated number to mitigate replay attack. Similarly, Park et al. (57) also suggest

using a concatenation of the wipe command and the timestamp using Base64 encoding to

mitigate replay attack (referred to as reply attack). This measure is, however, ineffective as an

adversary is able to decode the message, modify the timestamp so that the timestamp fulfils

the requirement, and re-encode the modified concatenated message. It is recommended that

the suggested approaches of Angelo et al. (48) and Park et al. (57) be deployed using

encryption to avoid modification of the wipe command.

Vendor Implementation

Android

The remote wiping feature was officially introduced into Android via ADM (Android Device

Manager) (23), which was previously only available via a third-party app. ADM is remotely

controlled via Google Cloud Messaging (GCM). GCM is a push messaging service used in

the Android platform that enables developers of mobile applications (apps) to deliver data to

their apps running on their customers’ mobile devices. With push messaging, a developer can

push notifications, messages and even commands to the apps, without continuous polling

from the apps which consumes resources. A developer operates a server (referred to as app

server) to send data to the app installed in a particular user’s device. In push messaging, the

app server does not directly initiate the connection to the mobile device. Instead, the data is

relayed through the provider of the push messaging service (referred to as connection server).

In addition, any message received from the connection server is processed by the service

client (akin to OS service) before passing to the app (Fig. 2). The connection server usually

restricts the data size, and in this case, the mobile device can be instructed to download the

data from an app server. Before an app can receive data through the GCM service, it needs to

register itself to the service with a registration ID and also the app server’s sender ID. This

allows the cloud server to associate an app server with an app installed on a particular mobile

device. Thus, only an app server with an authorised sender ID can push a message to the app

with related registration ID (67).

ADM utilises Android Device Administration API to execute wiping operation (68, 69). This

API is also available to a third-party app provider for mobile device management (MDM)

features at the system level. An IT administrator can write application that a user installs on

the mobile device to enrol into the MDM system of the company. The API only provides a

factory reset functionality, and a developer could choose to use GCM or any other method to

trigger the wipe remotely.

BlackBerry

Remote wiping can be triggered via BlackBerry Enterprise Server (BES) for corporate

environments or BlackBerry Protect for personal customers. The device is preloaded with a

root certificate during manufacture which authenticates using the BES (71). BES also has the

ability to track wiping status of the device (72), a property discussed earlier (“Acknowledge

Source that Wipe is Completed” section).

Devices enrolled in BlackBerry Protect cannot be associated with BES. In BlackBerry

Protect, the user has the ability to instruct the lost device to perform back-up (to BlackBerry

Protect service) before full wiping when running BlackBerry OS version 7.1 or earlier (73).

Later version does not have this feature.

iOS

Remote wiping can be triggered via iCloud (for personal consumers) or third-party mobile

device management (MDM) system (for corporate environments). Third-party MDM utilises

either Apple’s MDM API or Exchange ActiveSync (EAS) (64). In the third-party MDM

system, an employee’s mobile device is managed from a MDM server installed with software

provided by the MDM provider. The server creates a configuration profile (75), which is

uploaded to Apple’s server. A user then downloads and installs the configuration profile to

enrol into the system. This configuration profile allows the system administrator to have

control over the employee’s iOS device including the ability to remotely wipe. Subsequently,

whenever the MDM server wants to communicate with an iOS device, it does so via Apple’s

Push Notification Service (APNS), a push messaging protocol (70) secured with SSL/TLS

(74), instructing the device to check in. The iOS device then initiates SSL/TLS connection

with the server to check in. The server uses the connection to perform administrative tasks

including remote wiping. According to official Apple documentation (64), when performing

remote wipe, the mobile device will reply with an acknowledgement upon receiving the wipe

command. The device only checks in when using EAS; thus, it appears that the wipe

command via a single “push” message is sent by the MDM server through APNS without the

device checking in.

Windows Phone

Remote wipe can be initiated via the Exchange Management Console (EMC), Microsoft

Outlook Web Access (OWA), or a third-party MDM system depending upon how the mobile

device was enrolled initially. The wipe command is sent via the ActiveSync protocol.

ActiveSync is a push messaging protocol used for exchanging messages in the Microsoft

Exchange environment (76).

The mobile device can either be partially wiped or fully wiped. Partial wipe applies whenever

the device “un-enrols” or “retires” from the corporate MDM system. All the corporate

information, email accounts, VPN connections, Wi-Fi connections, policy settings, apps, and

data that the apps deployed are removed, except for personal apps or data on the device that

the user installed. Full wipe removes all the apps and information on a device and returns the

device to factory settings. (77)

Vulnerabilities

Implementations of the ActiveSync protocol in Android and iOS were discovered to be

flawed (78). The implementations failed to warn the user when presented with untrusted SSL

certificates and in some cases they will accept any certificate presented. This vulnerability

can be exploited to spoof an Exchange server to initiate unauthorised policy enforcement

such as performing remote factory reset on a mobile device. Similar flaw was also discovered

in some Android apps due to the incorrect use of the Android API when implementing SSL.

Consequently, these apps are insecure against man-in-the-middle (MitM) attacks (79, 80).

SSL certificate validation was also found to be broken in Amazon’s EC2 Java library (81)

and Apple’s SecureTransport library (82). These flaws highlighted the potential risk posed by

SSL implementation in non-browser applications, which have not evolved to the degree that

web browsers have (81). Such risk could extend to other remote wiping applications that

utilises SSL.

There was a flaw previously found in Google Cloud Messaging (GCM) that allowed an

adversary to control the ADM installed on the victim’s device (67). As mentioned in

(“Android” subsection of “Vendor Implementation” section), before an app can receive a

message through GCM, it needs to register itself to the service with a registration ID and also

app server’s sender ID. This allows a connection server to identify to which mobile device

and app to push the message. With a malicious app installed on the victim’s device which

acts as a man-in-the-middle (MitM), an adversary can intercept the registration request and

steal the registration ID, in this case registration ID of ADM. The adversary can then proceed

to control the ADM with the stolen registration ID. In addition, the connection server is

supposed to only allow the authorised app server to push a message by checking the sender’s

ID. However, this policy is not enforced and can allow an adversary to push a message from

their “unauthorised” app server (83).

Apple’s iCloud allegedly allowed unlimited password attempts, and thus is vulnerable to

brute-force attacks (84). This vulnerability was apparently responsible for compromising

several celebrities' iCloud accounts that ultimately lead to their photo leaks (85). Proof-of-

concept code to launch a brute-force attack on an iCloud service was published on August 30,

2014 at (https://github.com/hackappcom/ibrute). The vulnerability was apparently fixed two

days later (85). Apple denied that the incident was due to the vulnerability of iCloud services,

and instead claimed that it was a result of “very targeted attack on user names, passwords and

security questions,” (4). Although the photo leaks incident was about exposure of private

data, it could have been abused to erase victim’s data stored on their mobile devices.

Another recent high profile incident involves the unauthorised reactivation of iOS devices

which were locked using the “Activation Lock” feature (86). This feature was introduced to

deter theft by rendering stolen devices unusable. Unauthorised reactivation is performed by

redirecting the iCloud connection to a spoofed iCloud server. The server can then send an

unlock command to the locked device. Normally, reactivation requires sign-in to the iCloud

account associated with the mobile device. The existence of a spoofed iCloud server suggests

that the “Activation Lock” command might have been successfully reverse-engineered. Such

a feat could theoretically also extend to replicating the remote wipe command.

The cross-site request forgery (CSRF) (87) vulnerability was discovered in Samsung’s “Find

My Mobile”. This vulnerability is identified as CVE-2014-8346 (88). The vulnerability

allows unauthorised remote locking of a mobile device by sending a specially crafted link

with an embedded remote lock command to the victim. Assuming that the victim is logged on

to “Find My Mobile” service, when a victim clicks on the malicious link, the web browser

would send a remote lock request, in which the service proceeds to lock victim’s mobile

device. The attacker can customise the link to lock and change the unlock PIN, resulting in

the victim not able to unlock their mobile device.

The implications of unauthorised remote wipe is potentially damaging with increasing

reliance on digital devices in modern society. For example, a journalist described that his

“entire digital life was destroyed” when his online accounts were compromised (61). He

reportedly lost “more than a year’s worth of photos, emails, documents, and more.” after an

attacker remotely wiped all his devices, and could not “send or receive text messages or

phone calls” after his Google Voice account was deleted (89). His accounts were

compromised due to a weakness in the password reset policy adopted by a customer service

representative. Such incidents highlighted the heterogeneity of threats in online services, and

the fact that attack vectors are not restricted to web application flaws (90) or technical

vulnerabilities.

Summary

This concludes our survey of existing proposals on remote wiping. Existing proposals

generally do not consider securing the wipe command nor provide any mechanism to

automatically resume interrupted wiping process. Secure deletion is seldom used on mobile

devices. “Factory reset” serves as a simple method to remove all user data from mobile

device. However, studies have shown that factory reset does not sufficiently remove personal

data from mobile devices (91, 92, 93, 94, 95, 96, 97). Factory reset typically just logically

deletes data, leaving data residue that could be forensically recovered. Secure deletion seems

to be a clear solution to this issue, but it is actually not that straightforward due to the use of

flash storage in mobile device. Various challenges of secure flash storage deletion and how

existing proposals attempt to overcome them will be examined in the next section.

Secure Flash Storage Deletion

Secure deletion is sometimes referred to as forgotten, erased, deleted, completely

removed, reliably removed, purged, self-destructed, sanitized, revoked, assuredly deleted, and

destroyed in literature (43, p. 301). Before we discuss existing secure flash storage deletion

approaches, we present an overview of flash storage.

Flash Storage: An Overview

Flash Storage Layers and Structures

The process of storing new or deleting existing data by an app usually takes place over

different layers of the OSI model as outlined in Fig. 3. For example, an app usually modifies

data by calling the Application Programming Interface (API) function provided by the OS.

The data modification is then processed by the file system, and in the Android environment,

there are actually different ways for the file system to handle the data.

Before Android version 3.0 (Honeycomb), file system accesses the flash storage through a

memory technology device (MTD) (99). There is a built-in software flash translation layer

(FTL) responsible for remapping logical block address to physical location (100). FTL

emulates a normal block device such as a magnetic hard drive to enable the use of a common

block file system (e.g. ext4 and FAT32) (101, 102). Unsorted block image (UBI) is an

alternative interface to access flash memory, functioning as a layer on top of MTD. UBI

implements a FTL separate from the FTL in the OS (103). In Android version 3.0, the MTD

interface is replaced by an embedded multi-media card (eMMC) and secure digital (SD)

device. Both eMMC and SD have integrated FTL implemented in the hardware controller,

and therefore, software FTL is no longer necessary (102).

Like a magnetic hard drive, the flash storage is connected via the host interface connection

(e.g. SATA, PCI-Express, SCSI, Fibre Channel and USB). All data input/output (I/O) is

processed by the processor regardless of the type of FTL. The processor translates binary data

to electrical voltage to store data in the flash package.

The structure of the flash package is as follows; each package is made up of multiple dies,

each die consists of multiple planes, each plane comprises multiple blocks, and finally, each

block is made up of multiple pages (101). A Page is the smallest unit of I/O operation, and

the flash storage is accessed through the page unit (104). Each page has a spare area, known

as out-of-band (OOB), which is used to store the error correcting code (ECC) (105).

Data Overwriting in Flash Storage

 Secure deletion usually involves overwriting the original data to make it

unrecoverable (106, 107, 108, 109), and data overwriting can be performed through software

running on the OS (110) or firmware-based such as ATA's Secure Erase (109).

Government standards such as in the US (111) and Australia (112) recommend using ATA's

Secure Erase command or overwrite the media at least once in its entirety. Researchers such

as Garfinkel & Shelat (108), Joukov et al. (113) agreed that overwriting once is probably

adequately secure, although this view is not necessarily shared by others (114). Gutmann

(106), for example, suggested a 35-pass overwriting pattern and subsequently he clarified that

a few passes (rather than 35 passes) should be adequate in most situations (115). Garfinkel

and Shelat (108) also explained that Gutmann’s (106) demonstration that it is possible to

recover data using a one-pass wipe is due to older hard drives having gaps between “tracks”

and such gaps are not found in modern high-density magnetic hard drives.

However, flash storage could not rely on simple data overwriting for secure deletion. FTL not

just remaps logical block address, but also distributes write access across flash storage (116).

In flash storage, newer data is written to another valid block while the original block is

simply marked as “invalid” (117). This is known as an out-of-place update; whilst an in-place

update writes new data on top of the previous. Therefore, in an out-of-place update, the

original content is preserved even with an overwrite request. Wei et al. (107) demonstrated

that existing single-file secure deletion tools are ineffective in securely deleting file content in

flash storage. To truly overwrite the data, flash storage must erase the block prior to

overwriting with new data. However, an erase operation is significantly slower than a write

operation (118) and the number of erase operations allowed on a single block is limited,

ranging from 10,000 to 100,000 before it becomes a bad block - a block that cannot store data

anymore (103, 119).

Classification of Secure Flash Storage Deletion

In this survey, we adapt the categorisation approach proposed by Diesburg’s (45) and

Reardon et al. (43). We broadly categorised secure deletion approaches into the user-space

layer, the file system layer and the physical layer (Fig. 3). An alternative approach is to

organise them into complete overwrite, random overwrite, delete sensitive, and block deletion

(120). However, the latter approach is more appropriate in describing features provided by a

secure deletion method. Thus, it is not suitable to classify each secure deletion method

distinctly because each method described in this work most likely incorporates more than one

feature.

User-space Layer

Spreitzenbarth and Holz (116) developed a secure deletion tool for the Symbian OS, which

overwrites personal data (e.g. contacts, calendar entries, and SMS messages) using the OS

API. Since the tool utilised an OS API, it can be ported to other platforms. Wear levelling

techniques to prolong the service life of the storage media (e.g. flash memory) that have a

limited number of erase cycles before being rendered unreliable was not considered in this

work, and therefore, limiting its widespread adoption.

Reardon et al. (121) developed a secure deletion tool for the Android OS that will monitor the

amount of free space and fill it with random data. This ensures unwanted data marked as

invalid is filled with random data to achieve random deletion.

Albano et al. (122) proposed using standard Linux commands (e.g. cp, rm and dd) to delete

data of interest in Android devices, without using any cryptographic primitives or kernel

modules that will raise suspicion during a forensics analysis. The deletion process is

summarised as follows:

1. Copy /data partition to an external SD card.

2. Zero the partition while deleting the data of interest on external SD.

3. Move the remaining data on external SD back to the /data partition.

4. Zero the external SD.

The proposed method requires BusyBox (www.busybox.net) to be installed (which provides

the standard Linux commands). Installing BusyBox requires the user to have root privilege,

but such an approach will void the warranty and result in the device being vulnerable to other

malicious threats (123).

Kang et al. (124) proposed another method of data wiping for mobile phones, which

overwrites only part of the data that will render it unidentifiable instead of overwriting the

entire data. Their approach is designed only for data of the following file formats, namely;

JPEG, BMP, FLV, DOC and XLS.

Steele et al. (125) proposed a system to wipe several USB flash drives simultaneously. The

system checks the pre-set status of the drive upon insertion to determine whether to wipe the

drive. Data overwriting defaults to zero-overwriting but it is able to accommodate user-

defined patterns. The proposed system did not take into consideration wear-levelling or FTL

since the motivation behind the publication is simply because “there is literature on the

Internet that suggests that such recovery is possible for the dedicated hacker up to at least 10

layers of previously written data in some versions of solid state memory”. However, we were

unable to locate such literature.

The secure deletion approach proposed by Jevans et al. (126) uses either overwriting with

zeroes and ones, or cryptographic secure bit patterns. The proposed approach is designed

with a mechanism to resume interrupted wiping after the device is subsequently powered on,

and to ensure wear levelling. The approach described in this patent was implemented in

IronKey’s product (www.ironkey.com/en-US).

File System Layer

Weng and Wu (127) proposed using data encryption for secure flash storage deletion. Each

data block is encrypted with a key and whenever the data needs to be deleted, the key will be

removed. This work did not mention any mechanism to securely erase the key. The proposed

method of Lee et al. (128) has a similar concept but their method ensures that keys are stored

in the same block using an “unbalanced binary hash tree” algorithm. Thus, a file can be

securely deleted by erasing the file header block which deletes the key. This work has been

patented (129). Lee et al. (130) extended their previous work (128) to include US government

standards on data sanitisation. It will overwrite the data before erase operation whereas

previous work only used the erase operation. This is without additional operations required in

their previous work; and thus, the claim that the newer scheme is more secure and efficient

than the previous scheme. The proposal by Guyot et al. (131) is also based on data

encryption. The proposed method not only deletes the keys but includes garbage collection to

remove duplicate keys due to wear-levelling effect.

Reardon et al. (103) criticised the proposal by Lee et al. (128) saying that it is only

conceptual and that if implemented it would cause too much wear on flash memory. They

then proposed a scheme that is similar to Lee et al. (128) where each data block is encrypted

with a key and the key is purged through an erase operation when the data is no longer

needed. The proposed scheme encrypts each block of data with a distinct 128-bit AES key in

counter mode. An IV (initialisation vector) is not used due to the use of a distinct key. The

scheme is implemented in UBIFS (Unsorted Block Image File System), a log-structured file

system that builds upon UBI and has been tested on Android. The authors conducted various

tests including wear analysis, power consumption, and I/O performance. However, Skillen

and Mannan (102) argued that the proposed method by Reardon et al. (103) could only work

with memory technology device (MTD) due to dependency on the UBI.

Sun et al. (132) proposed a hybrid secure deletion scheme that utilises two techniques; block

cleaning and zero overwriting. Block cleaning is basically an “erase” operation (“Data

Overwriting in Flash Storage” section). The proposed scheme calculates the cost of each

technique before performing the secure delete and choosing the technique with a lower cost.

There are different scenarios which can affect the cost of each technique. In block cleaning,

any valid pages (pages that are storing valid data) residing inside blocks have to be copied

somewhere else before erasing the block. Thus, the cost of block cleaning increases as the

number of valid pages in a block increases. In contrast, zero overwriting can selectively

overwrite affected pages (pages that store the data which the user wants to delete) only. Thus,

block cleaning tends to be slower whenever large numbers of valid pages are involved since

the operation has to copy them first. Lee et at. (130) argued that block erasure does not

involve overwriting and therefore does not meet US government standard. Subha (133)

further pointed out that the calculation introduces latency.

Choi et al. (118) proposed a scheme involving password-based per-file encryption and secure

data deletion. The proposed encryption scheme encrypts file name and file data separately.

When the user wants to delete a particular file, the process is as follow:

1. Write zeroes to all spaces occupied by file name, file address, and file data.

2. Read the spaces and verify that it is “0x00”.

3. Execute the TRIM function that allows an operating system to inform the flash

storage that the spaces are no longer used and can be erased.

4. Finally, erase the space(s) so that new data can be stored.

Choi et al. criticised Truecrypt, a software-based full disk encryption, for storing secret

information (e.g. encryption/decryption key, user’s password, and master key) while their

proposed solution does not. The key problem with this criticism is that Truecrypt securely

stores the master key encrypted using the header key. The header key is not stored but

derived either from the user’s password or keyfile or both (134). This is similar to the

proposed file encryption scheme of Choi et al., but simpler (Fig. 4).

Choi et al. chose to use single file encryption because only important data is targeted and they

noted that full disk encryption is significantly slower. The advantage is protection against the

cold-boot attack (135, 136) because a user’s password and key created temporarily in RAM

can be safely disposed after the encryption or decryption process (118). Compared to full disk

encryption where data is encrypted and decrypted on-the-fly, the key has to be stored in RAM

or cached somewhere else to encrypt and decrypt data. However, important data does not

constitute just a single file but may encompass multiple files. In the proposed method, if a

user wants to access multiple files, the user has to provide individual passwords for

decryption of each file, which is inefficient.

Physical Layer

Shin (117) explored the feasibility of implementing secure deletion in different FTL schemes.

Shin claimed that current approaches are effective but suffer from low performance due to the

design limitation in existing FTL schemes, and suggested the need for a new FTL scheme

that is both effective and achieves good performance. Wei et al. (107) developed a new FTL

scheme which involves zero-overwrite of unused copies of data. The scheme works by re-

programming an unused cell to flip remaining ones to zeroes. Wei et al. cautioned that this

approach could trigger a ‘Program Disturb’ error (i.e. memory cells that are not being

programmed receiving elevated voltage stress). Reardon et al (121) criticised such an

approach as reprogramming operates outside existing specification, but Wei et al. claimed

that the ‘Program Disturb’ issue will not affect all drives.

Qin et al. (119) also adopted a similar approach to that of Wei et al. (107) in their proposal to

ensure traditional data overwriting is still effective. In order to mitigate the negative effect of

reprogramming, the use of RAID-5 is suggested. Although RAID-5 is generally found in

corporate environments, it is widely supported in consumer product without using dedicated

RAID hardware (137, 138). Despite RAID-5 being able to provide fault tolerance, there are

several disadvantages. For example, a typical RAID-5 setup requires at least three disks

(139), and part of the storage capacity is allocated to store parity to achieve fault tolerance.

Therefore, RAID-5 is not suitable for the general consumer (due to the expenses involved).

Rather than overwriting the data to be deleted, Subha (133) proposed to render the data

inaccessible. The error correcting code (ECC) is stored in a reserved area known as out-of-

band (OOB), and Subha proposed to overwrite certain parts of ECC to introduce a read error,

and therefore, rendering the data that resides in the block inaccessible. This results in a faster

secure deletion time since the size of the ECC is typical very small. However, it is yet

unknown whether data overwritten using ECC can be subsequently accessible by the OS.

Diesburg et al. (140) proposed TrueErase, an approach to correctly propagate secure deletion

information across layers. The approach considered the full data-paths from user-space down

to physical layer. Reardon et al. (43) likened this approach to a TRIM command but argued

that TrueErase is more efficient as it can only target sensitive parts of the file instead of the

entire file. Due to consideration of all layers involved, it is the most comprehensive approach

but such an approach is complex to implement (141).

Linnell (142) proposed a block erasure method whereby a block is erased by reprogramming

all pages into zeroes, similar to Wei et al. (107). Before the block is erased, any pages still

holding valid data (i.e. valid page) are copied to another block. However, such an approach

was pointed out in earlier work (132) to be slower than zero-overwriting when there are a

large number of valid pages to be copied.

Rather than using a series of write commands from the OS or host interface, Koren et al.

(143) proposed wiping flash storage using a single command from the host device, which will

trigger the flash storage to wipe itself. The command can also be sent wirelessly via

Bluetooth or infrared. Logical conditions such as higher than usual read operations can be

used to trigger the self-wiping to mitigate unauthorised disk duplication. The proposed

method includes a mechanism to automatically resume an interrupted wiping process

(described in “Ensure Wiping Operation is Completed” section). After the entire flash storage

has been wiped, the flash storage has a built-in status to indicate the process completion.

Android Implementation

According to Simon and Anderson (97), flash memory can be erased through ioctl() system

call provided by Linux kernel. On the MTD interface, ioctl(MEMERASE) method is used to

erase flash blocks so that they are available to store new data (144, 145). When eMMC was

introduced to Android devices, they used ioctl(BLKDISCARD) to send “TRIM” commands to

the flash controller. It is not considered as secure deletion because it simply marks the block

as available for new data. ioctl(BLKSEDISCARD) was later implemented in version 4.0 (Ice

Cream Sandwich) for secure deletion. This system call will pass “SECURE ERASE” OR

“SECURE TRIM” to the flash controller. The flash controller would execute the “ERASE” or

“TRIM” operation followed by “SANITIZE” (146). This is akin to ATA/ATAPI Command

Set-2 (ACS-2) “SANITIZE BLOCK ERASE” used in the desktop drive (107).

Table 4 summarises the deletion methods implemented throughout the history of Android as

identified by Simon and Anderson (97).

Case Study on Android Approach

As noted earlier, previous studies (notably by Wei et al. (107) and Reardon et al. (43)) have

shown that secure deletion tools operating at the user-space layer are ineffective in sanitising

data when running on flash memory. Wei et al. claimed it was due to FTL of flash memory

while Reardon et al. highlighted the file system design that affects the effectiveness of those

tools.

The secure deletion method implemented by Android in its Linux kernel is likely to be file

system-agnostic since the OS directly instructs the flash controller to securely delete specific

blocks. Since the flash controller is directly involved, we also assume it is a physical layer

approach. In this section, we analyse the effectiveness of this approach in Android. Sets of

applications and data are loaded onto the mobile devices. The mobile devices are then factory

reset which would also securely delete user data in accordance with the appropriate Android

version. Finally, the mobile devices are physically acquired to be analysed by forensic tools.

The forensic tools would attempt to recover user data, and the amount of data recovered

indicates how effective the secure deletion is.

We performed our experiments on three mobile devices. All three devices were installed with

different Android versions (see : Tables 9-12). Moto G was shipped with version 4.3

Jellybean (JB) and has been upgraded to version 4.4.2 KitKat (KK). Nexus S was shipped

with 2.3 Gingerbread (GB) and upgraded to 4.1.2 Jellybean (JB). Nexus 4 was shipped with

4.2 JB and upgraded to 5.1 Lollipop (L).

The mobile devices were restored to their factory image. Sets of applications and data were

loaded onto the mobile devices. “Pre-wipe” dd physical image was then taken. Factory reset

was then performed and “Post-wipe” image is taken. This was repeated for the other two

devices under test in this prototype experiment. Following are the steps taken to prepare the

data for “Pre-wipe”:

1. Sign into Google account and connect to “unisa” wireless network.

2. Save 30 contacts and call 10 of them.

3. Sync email. (Emails were generated on the Google account beforehand)

4. Install Google Drive, Dropbox, Box, & OneDrive.

5. Download documents:

a. 30 DOCX through Google Drive.

b. 30 PPTX through Dropbox.

c. 30 XLSX through Box.

d. 30 PDF through OneDrive.

6. Transfer following files to the mobile device:

a. 120 JPEG pictures.

b. 35 MP4 videos.

c. 30 MP3 audios.

7. Browse to 50 websites and bookmark them.

8. Sign into Reddit (www.reddit.com) and save login.

9. Install and sign into Facebook app.

10. Install and sign into Skype app (except for Nexus S).

We only acquire the /data partition (for Moto G and Nexus 4) and the /media partition (for

Nexus S) for our experiments because the partition is used to store user data and there are

different partition layouts depending on the Android version. Prior to Android 3.0

(Honeycomb), /data and /media are two separate partitions. On Honeycomb or later, /media

is no longer a dedicated partition; instead, it becomes a folder /data/media in /data partition.

Even though our Nexus S is equipped with JB, because it was originally shipped with GB, the

previous partition layout is still retained.

Four forensic tools are used to perform data recovery on all physical images acquired,

namely: UFED Physical Analyzer (v4.1 Trial), Internet Evidence Finder (IEF v6.5 Trial),

PhotoRec (v6.14), and Scalpel (v2.0). Scalpel is conFig.d to recover JPEG thumbnail only

(see (147) for detailed information on the recovery technique). “Pre-wipe” physical images

serve as a baseline to verify capability of these forensic tools.

Results are shown in Appendix: Tables 9-12 indicating the number of files recovered. Our

results are consistent with Table 4. Since the Android version running on Nexus S (JB) is

using an insecure deletion method on media partition (ioctl(BLKDISCARD)), significant user

data can be recovered. This result is consistent with previous studies that have highlighted the

issue of factory reset in Android being ineffective in sanitising user data. In contrast, the

result suggests that if a secure deletion method (ioctl(BLKSEDISCARD)) is supported (in the

case of Moto G and Nexus 4), user data can be sufficiently sanitised. Even when some results

for Moto G and Nexus 4 are more than zero, which implies some data could be recovered,

upon more inspection, we determined that the recovered data is false positive. Also note that

although the deletion method of Lollipop used by Nexus 4 is not known, we assume it is

either similar or perhaps more secure to KK.

Our preliminary results suggest that the secure deletion method implemented by Android can

sufficiently sanitise user data. However, it might not be applicable to other mobile device as

proper hardware implementation is also required, as evidenced by Simon and Anderson (97).

In addition, the data acquisition and recovery aspects could be limitations of our experiments.

With respect to data recovery, our experiments could be limited by the capability of our

forensic tools. This is despite the UFED Physical Analyzer and the Internet Evidence Finder

being commercial forensic tools commonly used by forensic investigators. Manual

scrutinisation could be topics for future work. With respect to data acquisition, even though

we use dd - a very popular physical data acquisition tool, it operates at the user-space layer

which might be hindered by FTL. Future study could use a data acquisition tool that is able to

bypass FTL (e.g. custom hardware used by Wei et al. (107)). We could also review how

viable such an approach is to an adversary.

Discussion

We now discuss the various limitations that we found in existing approaches before

summarising this section.

Limitations of Existing Literature

Lack of Data Recovery Evaluation

It is clear that most existing approaches focus on data recoverability testing, but there is a

lack of data recovery evaluation particularly at the file system and physical layers.

Almost all existing approaches had limited evaluations to determine their suitability (i.e. one

experiment per device in most proposals) which brings into question whether the approach

can be widely deployed over the wide range of mobile devices. For example, Wei et al. (107)

argued that different flash storage media could exhibit different behaviours and, therefore,

conducted tests on a wide range of commercially available consumer hardware. In addition,

the findings are dated, many of the devices tested such as HTC Nexus One are either

discontinued or no longer available. Therefore, findings from Albano et al. (122), Reardon et

al. (121), Reardon et al. (103) and others may no longer be applicable to newer devices and

OS.

Limitation of Using Simulation in Evaluations

A number of proposals were evaluated in the simulated environment (119, 133). While there

are advantages in using a simulated environment such as a mobile emulator (e.g. ease of use,

without the need for a custom-build hardware platform, and the ability to evaluate an

expensive or yet to be available commercial flash technology as outlined by Grupp et al.

(148)), simulation results are likely to be less reliable than actual hardware-based evaluations;

hence, limiting our understanding of the resulting real-world implications (149).

Performance

Modification at the hardware-level does not necessarily mean modifying the flash memory

cell or the processor of the SSD controller. Rather, in this paper, it refers to the modification

of the software or the firmware running at the physical level. Thus, the software-based

approach referred to in Table 7 is implemented above the physical level, namely the file

system and user-space layers.

Software-based implementation generally has a lower throughput due to the number of layers

involved; whilst a hardware-based implementation operates on the disk’s firmware which

allows it to run at the disk’s full bandwidth (150). For instance, software-based full disk

encryption (FDE) generally impacts on the disk’s performance even in flash storage (151).

Possible Attacks

A hardware-based secure deletion approach can perform erasure on all memory blocks (107),

but a software-based solution may not be able to access some of the blocks. ATA’s Secure

Erase function is the most commonly available hardware-based secure deletion method,

which can be found in most drives manufactured on or after year 2001. However, researchers

such as Wei et al. (107) and Swanson & Wei (152) found that some drives either fail to

complete the deletion process required in the Secure Erase function or do not erase the data at

all after executing that function.

Data can also be protected using encryption, such as hardware-based drive encryption (also

known as self-encrypting drive – SED). Müller et al. (153) proposed a hot plug attack, where

an adversary is able to gain unauthorised access to the data residing in the SED. In short, this

is due to the fact that when using the SED, a user unlocks the drive when powering on the

machine. After the disk is unlocked, and while the disk is still running (“hot”), an adversary

simply re-plugs the SATA cable from the original machine to the adversary’s machine to

access the SED without knowing the password. An adversary can also access the drive

directly by attaching a USB drive into the original machine if it is not screen locked.

To ensure high security compliance, there are several industry standards for SED, such as

Opal Security Subsystem Class (Opal SSC) by Trusted Computing Group (TCG) (154) and

“Encrypted Hard Drive” (eDrive) by Microsoft (155). The latter, for example, is partly based

on Opal SSC and IEEE 1667 (156). Major SED manufacturers offer OPAL-compliant

products (153, 157, 158, 159). Müller et al. (153) did not evaluate Opal-compliant SEDs, but

claimed that the hot plug attack affects such drives too. Since then, there had been no major

revision to the Opal SSC standard, and it is unknown whether such an attack claimed by

Müller et al. is valid.

On the other hand, software-based disk encryption may be vulnerable to a cold boot attack

(135; 136) because the encryption key is cached in RAM. In such an attack, an adversary

removes the RAM, re-plugs into another machine, and extracts the key from the RAM. Such

an attack is, however, difficult to carry out and can be mitigated by keeping the key outside

of RAM (160). In addition, software-based disk encryption does not encrypt the boot sector.

Therefore, an adversary is able to launch an evil maid attack (161) by installing a bootkit

(boot sector rootkit) into the victim’s machine to capture the password entry. Another form

of evil maid attack can be launched against hardware-based disk encryption. In this case, an

adversary removes the victim’s disk and replaces it with another disk loaded with the

adversary’s modified OS designed to capture the password entry (153, 162). In this case, it

can be thwarted using ATA’s password. The evil maid attack is possible in either software-

based or hardware-based systems due to a lack of a trusted boot environment (163) to

authenticate the boot sector or the disk to the user (162).

Summary

Table 7 summarises the key differences between hardware- and software-based

implementations of secure flash storage deletion.

The advantage in using a software-based approach is that it allows for easy verifiability. For

example, if the source code is available, then a public security audit can be conducted using

forensic techniques as demonstrated on TrueCrypt (134). Hardware-based verification may

require not only building a customised platform to access the memory directly but also

dismantling the device (152).

Modification on the hardware level can be very challenging, as one would generally require

having access to the source code of the firmware or the specification of the disk controller. It

may be possible to replace the firmware, but there is the risk of bricking the device. Software-

based solutions have a lower risk of damaging the hardware. Software-based modification,

especially at the file system layer, usually builds on an existing open source file system. The

improvement can be implemented simply by installing a new patch. Even in the case of a new

software component, existing data can be migrated with relative ease.

In addition, software-based modification is generally hardware independent. Implementation

at the hardware-level, however, may require compatibility at the higher layers. The user

would need to install new software, for example to support Opal SSC (164), and acquire new

hardware. For example, in Intel SED, the drive is encrypted by default using the unique key

generated during manufacture (165). It is activated simply by using the drive. This

mechanism could only protect in a situation where the NAND chip has been removed,

assuming that the key is not stored in the NAND chip or the location is only known to the

controller. Thus, SED behaves more like a “self-decrypting disk” (153) in the default

configuration. To protect the drive, the user would need to set the ATA password which

controls access to the drive, and consequently the data. This mechanism requires ATA

specification compatibility. Although the majority of consumer hard drives use a Serial ATA

(SATA) interface, there are drives that utilise SCSI/SAS, Fibre Channel, or PCIe host

interfaces.

Some new hardware-based features require installation of new hardware which is a more

expensive option. In the software-based approach, a user can take advantage of new features

via software updates.

Concluding Remarks

We have examined (the limited) literature on remote wiping, particularly secure deletion on

flash storage. Despite the prevalence of remote wiping, most existing literature provided a

high-level approach to remote wiping and secure data deletion. There are relatively few

technical papers evaluating the implementation of such approaches or techniques on a wide

range of popular mobile devices. One reason that this may not have been thoroughly explored

is due to the cost and efforts associated with such evaluations.

In addition to conducting a comparative summary of existing approaches, we identified

existing limitations and the research trends over the years (see Table 8).

As shown in Table 8, the majority of remote wiping patents were filed prior to 2010, although

academic interest on the topic appears to have increased since then. A similar trend was

observed with secure flash storage deletion, where there are at least three publications

annually since 2010.

This review highlights a number of literature gaps which are as follow:

1. The need to provide message confidentiality using encryption and ensure that the

wiping process cannot be interrupted. From our survey described in “Reviews of

Remote Wiping and Secure Flash Storage Deletion” section, existing proposals

generally do not consider securing the wipe command (“Secure Wipe Command”

section) nor provide any mechanism to automatically resume an interrupted wiping

process (“Ensure Wiping Operation is Completed” section).

2. The need for comprehensive evaluations on the security and effectiveness based on

real-world implementations of remote wiping. It is essential to ensure that the remote

wiping command cannot be hijacked by attackers (e.g. to prevent the wiping of lost or

stolen devices) or initiated by attackers (e.g. to remotely wipe contents from a

victim’s device) and wiped data cannot be recovered using contemporary forensic

techniques.

3. Real world implementations that mitigate identified shortcomings.

4. The need for evaluation of physical layer implementation on actual hardware. As

discussed in “Limitation of Using Simulation in Evaluations” section, evaluations of

existing hardware-level research on flash storage are generally conducted with a

simulator. The findings may not take into consideration internal workings of the flash

storage (as manufacturers may be hesitant to provide such information to protect their

intellectual property) (149, 152). To overcome this limitation, Diesburg et al. (140)

suggested using OpenSSD (166), a research platform designed for flash storage

research. There are also a few alternative platforms, such as FRP (167), BlueSSD

(168), and Ming II (169). These open platforms allow researchers to have unfettered

access to the hardware especially the FTL, which is not possible on commercial flash

storage.

5. The need for stronger collaboration between manufacturer and academic researcher.

In this review, we highlighted the importance of FTL as a vital factor in secure flash

storage deletion. For instance, Diesburg et al. (140) acknowledged their work is only

possible with access to software FTL and pointed out the trend of hardware FTL in

recent times. For example, newer Android versions have started utilising hardware

FTL (“Flash Storage Layers and Structures” section). Since hardware FTL is not

accessible in commercial hardware or the open research platforms mentioned earlier,

any research or evaluation on FTL could not be conducted without the involvement

and collaboration of a manufacturer. Therefore, it is argued that a stronger

collaboration between manufacturer and academic researcher will result in a more

secure product. Researchers can work with Open NAND Flash Interface (ONFi), a

consortium of flash memory manufacturers, to incorporate a secure deletion method

into the ONFi specification to facilitate wider adoption.

Does stronger security hinder law enforcement? Stronger security of remote wiping

mechanisms can help protect the privacy of the consumer. However, such a benefit could also

be abused by criminals to remove incriminating evidence (170, 171). In addition, law

enforcement have explained that they could not extract useful evidence from mobile devices

due to storage encryption (172, 173, 174), particularly in the post NSA revelations as mobile

device vendors and other technology companies enforce encryption by default in their

products (175, 176). Whether such a trend really does hinder law enforcement is the subject

of controversy and, perhaps, worthy of discussion. For example, how do we balance the need

for user privacy with the legitimate needs of government and law enforcement agencies to

access data to facilitate their investigations?

References

1. AMTA 2011, Lost and stolen phones, Australian Mobile Telecommunications

Association; http://www.amta.org.au/pages/Lost.and.stolen.phones.

2. Lynn G, Davey E. Black market' for stolen smartphones exposed. BBC, 2014;

http://www.bbc.com/news/uk-england-london-26979061 (accessed October 7, 2015).

3. Anderson N. Hacking Scarlett Johansson – and 50 other celebs – using google and

gumption. Ars Technica, 2012; http://arstechnica.com/tech-policy/2012/03/hacking-

scarlett-johanssonand-50-other-celebsusing-google-and-gumption/ (accessed October

7, 2015).

4. Gallagher S. What Jennifer Lawrence can teach you about cloud security. Ars

Technica, 2014; http://arstechnica.com/security/2014/09/what-jennifer-lawrence-can-

teach-you-about-cloud-security/ (accessed October 7, 2015).

5. Greenberg A. The police tool that pervs use to steal nude pics from apple's iCloud.

Wired, 2014; http://www.wired.com/2014/09/eppb-icloud/ (accessed October 7,

2015).

6. Verizon. 2014 data breach investigation report;

http://www.verizonenterprise.com/DBIR/2014/ (accessed October 7, 2015).

7. Symantec. Symantec smartphone honey stick project. Media Release, 2012;

https://www.symantec.com/about/news/resources/press_kits/detail.jsp?pkid=symantec

-smartphone-honey-stick-project (accessed October 7, 2015).

8. Caldwell T. The mobile ‘kill pill’ – poison or panacea. Computer Fraud & Security

2011;10:8–12.

9. Burnett RD, Friedman M, Rodriguez RP. Managing laptop security. Journal of

Corporate Accounting & Finance 2011;22(5):53–61.

http://www.amta.org.au/pages/Lost.and.stolen.phones
http://www.bbc.com/news/uk-england-london-26979061
http://arstechnica.com/tech-policy/2012/03/hacking-scarlett-johanssonand-50-other-celebsusing-google-and-gumption/
http://arstechnica.com/tech-policy/2012/03/hacking-scarlett-johanssonand-50-other-celebsusing-google-and-gumption/
http://arstechnica.com/security/2014/09/what-jennifer-lawrence-can-teach-you-about-cloud-security/
http://arstechnica.com/security/2014/09/what-jennifer-lawrence-can-teach-you-about-cloud-security/
http://www.wired.com/2014/09/eppb-icloud/
http://www.verizonenterprise.com/DBIR/2014/
https://www.symantec.com/about/news/resources/press_kits/detail.jsp?pkid=symantec-smartphone-honey-stick-project
https://www.symantec.com/about/news/resources/press_kits/detail.jsp?pkid=symantec-smartphone-honey-stick-project

10. Hansen CK. Technology trends in mobile communications how mobile are your data?

IEEE Reliability Society 2009 Annual Technology Report, 2010;

http://paris.utdallas.edu/IEEE-RS-ATR/document/2009/2009-07.pdf.

11. Evers J, Johnston CJ. System architecture. In: Professional blackberry. Indianapolis,

IN: Wiley Publication, 2005;3–18.

12. Punja SG, Mislan RP. Mobile device analysis. Small Scale Digital Device Forensics

Journal 2008;2(1):1–16.

13. Microsoft. Deploying windows mobile 5.0 with windows small business server 2003.

TechNet Library, 2009; http://technet.microsoft.com/en-

us/library/cc747512(v=WS.10).aspx (accessed October 7, 2015).

14. Microsoft. Microsoft releases windows mobile 5.0, 2005;

http://www.microsoft.com/en-us/news/press/2005/may05/05-

10windowsmobile5pr.aspx (accessed October 7, 2015).

15. Munro K. Ghost in the machine. Itnow 2008;50(2):10.

16. Erlichman J, Miller H. BlackBerry CEO briefs white house to keep Obama loyal.

Bloomberg Technology, 2014; http://www.bloomberg.com/news/2014-03-

06/blackberry-ceo-briefs-white-house-to-cultivate-vip-obama.html (accessed October

7, 2015).

17. Harauz J, Kaufman LM. A new era of presidential security: the president and his

BlackBerry. IEEE Security & Privacy 2009;7(2):67–70.

18. Morrison G. Implementation guide for email protective markings for Australian

government agencies, Australian Government Information Management Office,

Department of Finance and Administration, Australia, 2005;

http://www.finance.gov.au/publications/protective-

markings/docs/Protective_Markings.pdf (accessed October 7, 2015).

http://paris.utdallas.edu/IEEE-RS-ATR/document/2009/2009-07.pdf
http://technet.microsoft.com/en-us/library/cc747512(v=WS.10).aspx
http://technet.microsoft.com/en-us/library/cc747512(v=WS.10).aspx
http://www.microsoft.com/en-us/news/press/2005/may05/05-10windowsmobile5pr.aspx
http://www.microsoft.com/en-us/news/press/2005/may05/05-10windowsmobile5pr.aspx
http://www.bloomberg.com/news/2014-03-06/blackberry-ceo-briefs-white-house-to-cultivate-vip-obama.html
http://www.bloomberg.com/news/2014-03-06/blackberry-ceo-briefs-white-house-to-cultivate-vip-obama.html
http://www.finance.gov.au/publications/protective-markings/docs/Protective_Markings.pdf
http://www.finance.gov.au/publications/protective-markings/docs/Protective_Markings.pdf

19. Ogg E. Updated: IPhone OS 3.0 now available, CNET, 2009;

http://www.cnet.com/news/updated-iphone-os-3-0-now-available/ (accessed October

7, 2015).

20. Mayers S, Lee M. From MobileMe to iCloud. In: Learn OS X lion. New York, NY:

Apress, 2011;245–53.

21. Apple. iOS 4.2 software update. Apple, Inc, 2010;

http://support.apple.com/kb/DL1061 (accessed October 7, 2015).

22. Aomoth D. App of the week: find my iPhone. TIME, 2010;

http://techland.time.com/2010/11/23/app-of-the-week-find-my-iphone/ (accessed

October 7, 2015).

23. Poiesz B. Find your lost phone with android device manager. Android Official Blog,

2013; http://officialandroid.blogspot.com/2013/08/find-your-lost-phone-with-

android.html (accessed October 7, 2015).

24. Zhang H. Make mobile more manageable. Official Google for Work Blog, 2012;

http://googleforwork.blogspot.com/2012/08/make-mobile-more-manageable.html

(accessed October 7, 2015).

25. Shin Y. Non-volatile memory technologies for beyond 2010. In: Proceedings of

Symposium on VLSI Circuits Digest of Technical Papers; 2005 Jun 16-18; Kyoto,

Japan. Piscataway, NJ: IEEE, 2005;156–9.

26. BlackBerry. Enforcing encryption of internal and external file systems on BlackBerry

devices, 2010; http://www.manualslib.com/products/Blackberry-Enterprise-Solution-

Security-Enforcing-Encryption-Of-Internal-And-External-File-Systems-On-Devices-

2590666.html (accessed October 7, 2015).

27. Götzfried J, Müller T. ARMORED: CPU-bound encryption for android-driven ARM

devices. In: Proceedings of Eight International Conference on Availability, Reliability

http://www.cnet.com/news/updated-iphone-os-3-0-now-available/
http://support.apple.com/kb/DL1061
http://techland.time.com/2010/11/23/app-of-the-week-find-my-iphone/
http://officialandroid.blogspot.com/2013/08/find-your-lost-phone-with-android.html
http://officialandroid.blogspot.com/2013/08/find-your-lost-phone-with-android.html
http://googleforwork.blogspot.com/2012/08/make-mobile-more-manageable.html
http://www.manualslib.com/products/Blackberry-Enterprise-Solution-Security-Enforcing-Encryption-Of-Internal-And-External-File-Systems-On-Devices-2590666.html
http://www.manualslib.com/products/Blackberry-Enterprise-Solution-Security-Enforcing-Encryption-Of-Internal-And-External-File-Systems-On-Devices-2590666.html
http://www.manualslib.com/products/Blackberry-Enterprise-Solution-Security-Enforcing-Encryption-Of-Internal-And-External-File-Systems-On-Devices-2590666.html

and Security; 2013 Sep 2-6; Regensburg, Germany. Piscataway, NJ: IEEE, 2013;161–

8.

28. Teufl P, Zefferer T, Stromberger C. Mobile device encryption systems. In:

Janczewski LJ, Wolfe HB, Shenoi S, editors. IFIP Advances in Information and

Communication Technology. Heidelberg, Germany: Springer, 2013;405:203–16.

29. Microsoft. Device encryption, Security for Windows Mobile Devices, 2010;

http://msdn.microsoft.com/en-us/library/bb964600.aspx (accessed October 7, 2015).

30. Belfiore J. Announcing Windows Phone 8. Windows Blog, 2012;

http://blogs.windows.com/windowsexperience/2012/06/20/announcing-windows-

phone-8/ (accessed October 7, 2015).

31. Godfrey R. Announcing Windows Phone 8. Microsoft UK Schools Blog, 2012;

http://blogs.msdn.com/b/ukschools/archive/2012/06/27/announcing-windows-phone-

8.aspx (accessed October 7, 2015).

32. Götzfried J, Müller T. Analysing Android’s full disk encryption feature. J Wirel Mob

Netw Ubiquitous Com Dependable Appl 2014;5(1):84–100.

33. Timberg C. Newest androids will join iPhones in offering default encryption,

blocking police. The Washington Post, 2014;

https://www.washingtonpost.com/news/the-switch/wp/2014/09/18/newest-androids-

will-join-iphones-in-offering-default-encryption-blocking-police/ (accessed October

7, 2015).

34. Chester B, Ho J. Encryption and storage performance in android 5.0 lollipop.

AnandTech, 2014; http://www.anandtech.com/show/8725/encryption-and-storage-

performance-in-android-50-lollipop (accessed October 7, 2015).

http://msdn.microsoft.com/en-us/library/bb964600.aspx
http://blogs.windows.com/windowsexperience/2012/06/20/announcing-windows-phone-8/
http://blogs.windows.com/windowsexperience/2012/06/20/announcing-windows-phone-8/
http://blogs.msdn.com/b/ukschools/archive/2012/06/27/announcing-windows-phone-8.aspx
http://blogs.msdn.com/b/ukschools/archive/2012/06/27/announcing-windows-phone-8.aspx
https://www.washingtonpost.com/news/the-switch/wp/2014/09/18/newest-androids-will-join-iphones-in-offering-default-encryption-blocking-police/
https://www.washingtonpost.com/news/the-switch/wp/2014/09/18/newest-androids-will-join-iphones-in-offering-default-encryption-blocking-police/
http://www.anandtech.com/show/8725/encryption-and-storage-performance-in-android-50-lollipop
http://www.anandtech.com/show/8725/encryption-and-storage-performance-in-android-50-lollipop

35. Google. A sweet lollipop, with a kevlar wrapping: new security features in Android

5.0. Official Android Blog, 2014; http://officialandroid.blogspot.com/2014/10/a-

sweet-lollipop-with-kevlar-wrapping.html (accessed October 7, 2015).

36. Malchev I. Enable hardware crypto for userdata encryption. Git at Google, 2014;

https://android.googlesource.com/platform/system/vold/+/bb7d9afea9479eabbc98133

d3d968225a1e1019e%5E%21/#F0 (accessed October 7, 2015).

37. Franco F. Continuing the tale of "Nexus 6 is way smoother on Android 5.1", 2015;

https://plus.google.com/+FranciscoFranco1990/posts/3RKjDGjjPQ7 (accessed

October 7, 2015).

38. Elenkov N. Hardware-accelerated disk encryption in Android 5.1, 2015;

http://nelenkov.blogspot.com/2015/05/hardware-accelerated-disk-encryption-in.html

(accessed October 7, 2015).

39. Percival C. Stronger key derivation via sequential memory-hard functions, 2009;

https://www.tarsnap.com/scrypt/scrypt.pdf (accessed October 7, 2015).

40. Elenkov N. Revisiting Android disk encryption, 2014;

http://nelenkov.blogspot.com/2014/10/revisiting-android-disk-encryption.html

(accessed October 7, 2015).

41. Crimes Act s 3LA. Commonwealth of Australia, Australia (1914).

42. Ockenden W, Sveen B. Abdilo, infamous Australian teen hacker, raided by police and

ordered to surrender passwords. ABC News, 2015; http://www.abc.net.au/news/2015-

04-02/infamous-australian-teenager-hacker-abdilo-raided-by-police/6368612

(accessed October 7, 2015).

43. Reardon J, Basin D, Capkun S. SoK: Secure data deletion. In: Proceedings of

Symposium on Security and Privacy; 2013 May 19-22; San Francisco, CA.

Piscataway, NJ: IEEE, 2013;301–15.

http://officialandroid.blogspot.com/2014/10/a-sweet-lollipop-with-kevlar-wrapping.html
http://officialandroid.blogspot.com/2014/10/a-sweet-lollipop-with-kevlar-wrapping.html
https://plus.google.com/+FranciscoFranco1990/posts/3RKjDGjjPQ7
http://nelenkov.blogspot.com/2015/05/hardware-accelerated-disk-encryption-in.html
https://www.tarsnap.com/scrypt/scrypt.pdf
http://nelenkov.blogspot.com/2014/10/revisiting-android-disk-encryption.html
http://www.abc.net.au/news/2015-04-02/infamous-australian-teenager-hacker-abdilo-raided-by-police/6368612
http://www.abc.net.au/news/2015-04-02/infamous-australian-teenager-hacker-abdilo-raided-by-police/6368612

44. Storer MW, Greenan K, Miller EL. Long-term threats to secure archives. In:

Proceedings of the Second Workshop on Storage Security and Survivability; 2006 Oct

31-Nov 2; Alexandria, VA. New York, NY: ACM, 2006;9–16.

45. Diesburg SM. Per-file full-data-path secure deletion for electronic storage (PhD

dissertation). Tallahassee, FL: Florida State University, 2012.

46. DON CIO Privacy Team. Methods for hard drive/disk destruction. Department of

Navy Chief Information Officer, 2010;

http://www.doncio.navy.mil/ContentView.aspx?ID=1867 (accessed October 7, 2015).

47. Hughes GF, Coughlin TM. Tutorial on disk drive data sanitization. San Diego, CA:

Center for Magnetic Recording Research, University of California, 2006.

48. Angelo M, Novoa M, Olarig S, inventors. After the fact protection of data in remote

personal and wireless devices. US patent 2003/0065934. 2003 Apr 3.

49. Brown MK, Brown MS, Little HA, Totzke SW, inventors. BlackBerry Ltd, assignee.

Selectively wiping a remote device. US patent 8,056,143. 2011 Nov 8.

50. Walker DR, Fyke SH, inventors. BlackBerry Ltd, assignee. System and method for

remote wipe through voice mail. EU patent EP2575384A1. 2013 Apr 3.

51. Kenney T, inventor. Systems and methods that provide user and/or network personal

data disabling commands for mobile devices. US patent 2005/0186954. 2005 Aug 25.

52. Hasebe M, inventor. Toshiba Corp, assignee. System for remotely securing/locking a

stolen wireless device via an email message. US patent 5,987,609. 1999 Nov 16.

53. Sennett DWA, Daly BK, inventors. AT&T Mobility II LLC, assignee. Remote

disablement of a communication device. US patent 8,375,422. 2013 Feb 12.

54. Onyon R, Stannard L, Ridgard L, inventors. Remote cell phone auto destruct. US

patent 2007/0056043A1. 2007 Mar 8.

http://www.doncio.navy.mil/ContentView.aspx?ID=1867

55. Gajdos T, Kretz M, inventors. Sony Ericsson Mobile Communications AB, assignee.

Method for disabling a mobile device. EU patent EP1725056A1. 2006 Nov 22.

56. Yu X, Wang Z, Sun K, Zhu WT, Gao N, Jing J. Remotely wiping sensitive data on

stolen smartphones. In: Proceedings of the Ninth ACM Symposium on Information,

Computer and Communications Security; 2014 Jun 4-6; Kyoto, Japan. New York,

NY: ACM, 2014;537–42.

57. Park K, Ma GI, Yi JH, Cho Y, Cho S, Park S. Smartphone remote lock and wipe

system with integrity checking of SMS notification. In: Proceedings of International

Conference on Consumer Electronics; 2011 Jan 9-12; Las Vegas, NV.

Piscataway, NJ: IEEE, 2014;263–4.

58. Kuppusamy KS, Senthilraja R, Aghila G. A model for remote access and protection of

smartphones using short message service. Int J Comput Sci En Inf Technol

2012;2(1):91–100.

59. Joe I, Lee Y. Design of remote control system for data protection and backup in

mobile devices. In: Proceedings of International Conference on Interaction Sciences;

2011 Aug 16-18; Busan, South Korea. Piscataway, NJ: IEEE, 2011;189–93.

60. Adusumalli P. Implementation of an android application to retrieve information from

a lost android device [Graduate project report]. Corpus Christi, TX: Texas A&M

University-Corpus Christi, 2014.

61. Honan M. How Apple and Amazon security flaws led to my epic hacking. Wired,

2012a; http://www.wired.com/2012/08/apple-amazon-mat-honan-hacking/all/

(accessed October 7, 2015).

62. Zetter K. Palin E-mail hacker says it was easy. Wired, 2008;

http://www.wired.com/2008/09/palin-e-mail-ha/ (accessed October 7, 2015).

http://www.wired.com/2012/08/apple-amazon-mat-honan-hacking/all/
http://www.wired.com/2008/09/palin-e-mail-ha/

63. Guo C, Wang HJ, Zhu W. Smart-phone attacks and defences. In: Proceedings of

Third Workshop on Hot Topics in Networks; 2004 Nov 15-16; San Diego, CA. New

York, NY: ACM, 2004;235–45.

64. Apple. iOS security, 2015;

https://www.apple.com/business/docs/iOS_Security_Guide.pdf (accessed October 7,

2015).

65. BlackBerry. Security technical overview of BES10 cloud solution, 2014a;

https://www.blackberry.com/blackberrytraining/web/KryptonDocs/resources/BES10_

Cloud_Market_Preview_Security_Technical_Overview_en.pdf (accessed October 7,

2015).

66. BlackBerry. Blackberry enterprise solution 5.0.2: Security technical overview, 2011;

http://docs.blackberry.com/en/admin/deliverables/38816/BlackBerry_Enterprise_Serv

er_5.0_SP3_and_BlackBerry_7.1-Security_Technical_Overview--1936256-

0117012254-001-5.0.3-US.pdf (accessed October 7, 2015).

67. Li T, Zhou X, Xing L, Lee Y, Naveed M, Wang X, Han X. Mayhem in the push

clouds: understanding and mitigating security hazards in mobile push-messaging

services. In: Proceedings of Conference on Computer and Communications Security;

2014 Nov 3-7; Scottsdale, AZ. New York, NY: ACM, 2014a;978–89.

68. Android Developers n.d.a, Android security overview;

http://source.android.com/devices/tech/security/index.html (accessed October 7,

2015).

69. Android Developers n.d.b. Device administration;

https://developer.android.com/guide/topics/admin/device-admin.html (accessed

October 7, 2015).

https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.blackberry.com/blackberrytraining/web/KryptonDocs/resources/BES10_Cloud_Market_Preview_Security_Technical_Overview_en.pdf
https://www.blackberry.com/blackberrytraining/web/KryptonDocs/resources/BES10_Cloud_Market_Preview_Security_Technical_Overview_en.pdf
http://docs.blackberry.com/en/admin/deliverables/38816/BlackBerry_Enterprise_Server_5.0_SP3_and_BlackBerry_7.1-Security_Technical_Overview--1936256-0117012254-001-5.0.3-US.pdf
http://docs.blackberry.com/en/admin/deliverables/38816/BlackBerry_Enterprise_Server_5.0_SP3_and_BlackBerry_7.1-Security_Technical_Overview--1936256-0117012254-001-5.0.3-US.pdf
http://docs.blackberry.com/en/admin/deliverables/38816/BlackBerry_Enterprise_Server_5.0_SP3_and_BlackBerry_7.1-Security_Technical_Overview--1936256-0117012254-001-5.0.3-US.pdf
http://source.android.com/devices/tech/security/index.html
https://developer.android.com/guide/topics/admin/device-admin.html

70. ManageEngine n.d. MDM architecture;

http://www.manageengine.com/products/desktop-central/mobile-device-management-

mdm-architecture.html (accessed October 7, 2015).

71. BlackBerry. BlackBerry device service solution security technical overview (v10.2),

2014b;

http://docs.blackberry.com/en/admin/deliverables/60198/BES10_v10.2_BDS_Securit

y_Technical_Overview_en.pdf (accessed October 7, 2015).

72. BlackBerry. BlackBerry device service advanced administration guide (v10.2), 2014c;

http://docs.blackberry.com/en/admin/deliverables/59623/BES10_v10.2_BDS_Advanc

ed_Admin_Guide_en.pdf (accessed October 7, 2015).

73. BlackBerry. BlackBerry protect user guide (v1.2.1), 2015;

http://docs.blackberry.com/en/smartphone_users/deliverables/49400/BlackBerry_Prot

ect-User_Guide-1343391475156-1.2.1-en.pdf (accessed October 7, 2015).

74. Apple n.d.a. iPhone in business: manage devices;

https://www.apple.com/iphone/business/it/management.html (accessed October 7,

2015).

75. Apple n.d.b. About configuration profile;

https://help.apple.com/configurator/mac/1.6/#/cadbf9e668 (accessed October 7,

2015).

76. Microsoft. Exchange ActiveSync, 2013; http://technet.microsoft.com/en-

US/library/aa998357%28v=exchg.150%29.aspx (accessed October 7, 2015).

77. Microsoft. Windows Phone 8.1 security overview, 2014;

http://www.microsoft.com/en-us/download/details.aspx?id=42509&751be11f-ede8-

5a0c-058c-2ee190a24fa6=True (accessed October 7, 2015).

http://www.manageengine.com/products/desktop-central/mobile-device-management-mdm-architecture.html
http://www.manageengine.com/products/desktop-central/mobile-device-management-mdm-architecture.html
http://docs.blackberry.com/en/admin/deliverables/60198/BES10_v10.2_BDS_Security_Technical_Overview_en.pdf
http://docs.blackberry.com/en/admin/deliverables/60198/BES10_v10.2_BDS_Security_Technical_Overview_en.pdf
http://docs.blackberry.com/en/admin/deliverables/59623/BES10_v10.2_BDS_Advanced_Admin_Guide_en.pdf
http://docs.blackberry.com/en/admin/deliverables/59623/BES10_v10.2_BDS_Advanced_Admin_Guide_en.pdf
http://docs.blackberry.com/en/smartphone_users/deliverables/49400/BlackBerry_Protect-User_Guide-1343391475156-1.2.1-en.pdf
http://docs.blackberry.com/en/smartphone_users/deliverables/49400/BlackBerry_Protect-User_Guide-1343391475156-1.2.1-en.pdf
https://www.apple.com/iphone/business/it/management.html
http://technet.microsoft.com/en-US/library/aa998357%28v=exchg.150%29.aspx
http://technet.microsoft.com/en-US/library/aa998357%28v=exchg.150%29.aspx
http://www.microsoft.com/en-us/download/details.aspx?id=42509&751be11f-ede8-5a0c-058c-2ee190a24fa6=True
http://www.microsoft.com/en-us/download/details.aspx?id=42509&751be11f-ede8-5a0c-058c-2ee190a24fa6=True

78. Hannay P, Carpene C, Valli C, Woodward A, Johnstone M. Exchanging demands:

weaknesses in SSL implementations for mobile platforms. In: Proceedings of the

Eleventh Australian Information Security Management Conference; 2013 Dec 2-4;

Perth, Australia. Perth, Australia: Edith Cowan University, 2013;42–48.

79. Hubbard J, Weimer K, Chen Y. A study of SSL proxy attacks on android and iOS

mobile applications. In: Proceedings of the Eleventh Consumer Communications and

Networking Conference; 2014 Jan 10-13; Las Vegas, NV. Piscataway, NJ: IEEE,

2014;86–91.

80. Fahl S, Harbach M, Muders T, Baumgärtner L, Freisleben B, Smith M. Why eve and

mallory love android: An analysis of android SSL (in)security. In: Proceedings of the

Conference on Computer and Communications Security; 2012 Oct 16-18; Raleigh,

NC. New York, NY: ACM, 2012;50–61.

81. Georgiev M, Iyengar S, Jana S, Anubhai R, Boneh D, Shmatikov V. The most

dangerous code in the world: validating SSL certificates in non-browser software. In:

Proceedings of the Conference on Computer and Communications Security; 2012 Oct

16-18; Raleigh, NC. New York, NY: ACM, 2012;38–49.

82. Ducklin P. Anatomy of a "goto fail" - Apple's SSL bug explained, plus an unofficial

patch for OS X!, Naked Security, 2014;

https://nakedsecurity.sophos.com/2014/02/24/anatomy-of-a-goto-fail-apples-ssl-bug-

explained-plus-an-unofficial-patch/ (accessed October 7, 2015).

83. Li T, Zhou X, Xing L, Lee Y, Naveed M, Wang X, Han X. Supplement materials for

mayhem in the push clouds paper, 2014b; https://sites.google.com/site/cloudmsging/

(accessed October 7, 2015).

https://nakedsecurity.sophos.com/2014/02/24/anatomy-of-a-goto-fail-apples-ssl-bug-explained-plus-an-unofficial-patch/
https://nakedsecurity.sophos.com/2014/02/24/anatomy-of-a-goto-fail-apples-ssl-bug-explained-plus-an-unofficial-patch/
https://sites.google.com/site/cloudmsging/

84. Greenberg A. The police tool that pervs use to steal nude pics from Apple's iCloud,

Wired, 2014; http://www.wired.com/2014/09/eppb-icloud/ (accessed October 7,

2015).

85. Kingsley-Hughes A. Apple patches 'find my iPhone' exploit. ZDNet, 2014;

http://www.zdnet.com/apple-patches-find-my-iphone-exploit-7000033171/ (accessed

October 7, 2015).

86. Pagliery J. Hackers can 'un-brick' stolen iPhones, CNN, 2014;

http://money.cnn.com/2014/05/21/technology/security/icloud-hack/ (accessed October

7, 2015).

87. OWASP. Cross-site request forgery (CSRF), 2014;

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29

(accessed October 7, 2015).

88. US-CERT. CVE-2014-8346, National Vulnerability Database, 2014;

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-8346 (accessed October

7, 2015).

89. Honan M. Yes, I was hacked. Hard, 2012b;

http://www.emptyage.com/post/28679875595/yes-i-was-hacked-hard (accessed

October 7, 2015).

90. OWASP. OWASP top 10, 2013; https://www.owasp.org/index.php/Top10 (accessed

October 7, 2015).

91. Siciliano R. I found your data on that used device you sold, McAfee, 2012;

https://blogs.mcafee.com/consumer/i-found-your-data-on-that-used-device-you-sold

(accessed October 7, 2015).

http://www.wired.com/2014/09/eppb-icloud/
http://www.zdnet.com/apple-patches-find-my-iphone-exploit-7000033171/
http://money.cnn.com/2014/05/21/technology/security/icloud-hack/
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-8346
http://www.emptyage.com/post/28679875595/yes-i-was-hacked-hard
https://www.owasp.org/index.php/Top10
https://blogs.mcafee.com/consumer/i-found-your-data-on-that-used-device-you-sold

92. Honan M. Break out a hammer: you’ll never believe the data 'wiped' smartphones

store, Wired, 2013; http://www.wired.com/2013/04/smartphone-data-trail/ (accessed

October 7, 2015).

93. The Guardian. Recycled mobile phones retain previous owner data, 2013;

http://web.archive.org/web/20140529182505/http://www.theguardian.com/media-

network/partner-zone-infosecurity/mobile-phones-previous-owner-data (accessed

October 12, 2015).

94. Schwamm R. Effectiveness of the factory reset on a mobile device [Master's thesis].

Monterey, CA: Naval Postgraduate School, 2014.

95. Schwamm R, Rowe NC. Effects of the factory reset on mobile devices. J Digit

Forensics, Security and Law 2014;9(2):205–20.

96. McColgan J. Tens of thousands of Americans sell themselves online every day,

AVAST Software, 2014; https://blog.avast.com/2014/07/08/tens-of-thousands-of-

americans-sell-themselves-online-every-day/ (accessed October 12, 2015).

97. Simon L, Anderson R. Security analysis of Android factory resets. In: Proceedings of

the Mobile Security Technologies Workshop; 2015 May 21; San Jose, CA.

Piscataway, NJ: IEEE, 2015a;1-10; http://ieee-

security.org/TC/SPW2015/MoST/papers/s1p3.pdf (accessed October 12, 2015).

98. Agrawal N, Prabhakaran V, Wobber T, Davis JD, Manasse M, Panigrahy R. Design

tradeoffs for SSD performance. In: Proceedings of the USENIX Annual Technical

Conference; 2008 Jun 22-27; Boston, MA: USENIX Association, 2008;57–70.

99. Woodhouse D. General MTD documentation, Memory Technology Device (MTD)

Subsystem for Linux, 2008; http://www.linux-mtd.infradead.org/doc/general.html

(accessed October 7, 2015).

http://www.wired.com/2013/04/smartphone-data-trail/
http://web.archive.org/web/20140529182505/http:/www.theguardian.com/media-network/partner-zone-infosecurity/mobile-phones-previous-owner-data
http://web.archive.org/web/20140529182505/http:/www.theguardian.com/media-network/partner-zone-infosecurity/mobile-phones-previous-owner-data
https://blog.avast.com/2014/07/08/tens-of-thousands-of-americans-sell-themselves-online-every-day/
https://blog.avast.com/2014/07/08/tens-of-thousands-of-americans-sell-themselves-online-every-day/
http://ieee-security.org/TC/SPW2015/MoST/papers/s1p3.pdf
http://ieee-security.org/TC/SPW2015/MoST/papers/s1p3.pdf
http://www.linux-mtd.infradead.org/doc/general.html

100. Intel. Understanding the flash translation layer (FTL) specification, 1998;

http://www.eetasia.com/ARTICLES/2002MAY/2002MAY07_MEM_AN.PDF

(accessed October 12, 2015).

101. Ma D, Feng J, Li G. A survey of address translation technologies for flash

memories. ACM Comput Surv 2014;46(3):1–39.

102. Skillen A, Mannan M. On implementing deniable storage encryption for

mobile devices. In: Proceedings of the Twentieth Annual Network and Distributed

System Security Symposium; 2013 Feb 24-27; San Diego, CA. Reston, VA: Internet

Society, 2013;1–17.

103. Reardon J, Capkun S, Basin D. Data node encrypted file system: efficient

secure deletion for flash memory. In: Proceedings of the Twenty Second USENIX

Security Symposium; 2013 Aug 14-16; Washington, D.C. Berkeley, CA: USENIX

Association, 2013b;333–48.

104. Kim H, Kim J, Choi S, Jung H, Jung J. A page padding method for fragmented

flash storage. In: Gervasi O, Gavrilova ML, editors. Lecture Notes in Computer

Science. Heidelberg, Germany: Springer, 2007;4705:164–77.

105. Huang P, Zhou K, Wu C. ShiftFlash: make flash-based storage more resilient

and robust. Performance Evaluation 2011;68(11)1193–206.

106. Gutmann P. Secure deletion of data from magnetic and solid-state memory. In:

Proceedings of the Sixth USENIX Security Symposium; 1996 Jul 22-25; San Jose,

CA. Berkeley, CA: USENIX Association, 1996;1–18.

107. Wei MYC, Grupp LM, Spada FE, Swanson S. Reliably erasing data from

flash-based solid state drives. In: Proceedings of the Ninth USENIX Conference on

File and Storage Technologies; 2011 Feb 15-17, San Jose, CA. Berkeley, CA:

USENIX Association, 2011;8–20.

http://www.eetasia.com/ARTICLES/2002MAY/2002MAY07_MEM_AN.PDF

108. Garfinkel SL, Shelat A. Remembrance of data passed: a study of disk

sanitization practices. IEEE Security & Privacy 2003;1(1):17–27.

109. Hughes GF, Coughlin TM. Secure erase of disk drive data. IDEMA Insight

Magazine 2002;25.

110. Cornell University. Disk and file erasure, best practices for media destruction,

2012; http://www.it.cornell.edu/security/depth/practices/media_destruct.cfm#erasure

(accessed October 12, 2015).

111. Kissel R, Regenscheid A, Scholl M, Stine K. Guidelines for media

sanitization, NIST Special Publication 800-88, 2014;

http://dx.doi.org/10.6028/NIST.SP.800-88r1 (accessed October 12, 2015).

112. Australian Signals Directorate. 2015 Australian Government Information

Security Manual, 2015;

http://www.asd.gov.au/publications/Information_Security_Manual_2015_Controls.pd

f (accessed October 12, 2015).

113. Joukov N, Papaxenopoulos H, Zadok E. Secure deletion myths, issues, and

solutions. In: Proceedings of the Second Workshop on Storage Security and

Survivability; 2006 Oct 31-Nov 2; Alexandria, VA. New York, NY: ACM, 2006;61–

6.

114. Wright C, Kleiman D, Sundhar S. Overwriting hard drive data: the great

wiping controversy. In: Sekar R, Pujari AK, editors. Lecture notes in computer

science. Heidelberg, Germany: Springer, 2008;5352:243–57.

115. Gutmann P. Secure deletion of data from magnetic and solid-state memory,

Department of Computer Science, University of Auckland, New Zealand, 2003;

https://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html (accessed October 12,

2015).

http://dx.doi.org/10.6028/NIST.SP.800-88r1
http://www.asd.gov.au/publications/Information_Security_Manual_2015_Controls.pdf
http://www.asd.gov.au/publications/Information_Security_Manual_2015_Controls.pdf
https://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html

116. Spreitzenbarth M, Holz T. Towards secure deletion on smartphones. In:

Proceedings of the Fifth Conference of the GI Special Interest Group “Sicherheit,

schutz und zuverlässigkeit”; 2010 Oct 5-7; Berlin, Germany. Bonn, Germany:

Gesellschaft für Informatik e.V. (GI), 2010;165–76.

117. Shin I. Secure file delete in NAND-based storage. International Journal of

Security and its Applications 2012;6(2):257–60.

118. Choi Y, Lee D, Jeon W, Won D. Password-based single-file encryption and

secure data deletion for solid-state drive. In: Proceedings of the Eighth International

Conference on Ubiquitous Information Management and Communication; 2014 Jan

9-11; Siem Reap, Cambodia. New York, NY: ACM, 2014;1–7.

119. Qin Y, Tong W, Liu J, Zhu Z. SmSD: a smart secure deletion scheme for

SSDs. J Converg 2013;4(4);30–5.

120. Gupta A, Singhal M, Gangil A, Mishra A. SDC: secure deletion classification.

In: Proceedings of the International Conference on Recent Trends in Information

Technology; 2011 Jun 3-5; Chennai, India. Piscataway, NJ: IEEE, 2011;1303–7.

121. Reardon J, Marforio C, Capkun S, Basin D. User-level secure deletion on log-

structured file systems. In: Proceedings of the Seventh Symposium on Information,

Computer and Communications Security; 2012 May 1-3; Seoul, South Korea. New

York, NY: ACM, 2012;63–73.

122. Albano P, Castiglione A, Cattaneo G, De Santis A. A novel anti-forensics

technique for the android OS. In: Proceedings of the Sixth International Conference

on Broadband and Wireless Computing, Communication and Applications; 2011 Oct

26-28; Barcelona, Spain. Piscataway, NJ: IEEE, 2011;380–5.

123. Pieterse H, Olivier MS. Security steps for smartphone users. In: Proceedings

of the Twelfth International Information Security for South Africa Conference; 2013

Aug 14-16; Johannesburg, South Africa. Piscataway, NJ: IEEE, 2013;1–6.

124. Kang S, Park K, Kim J. Cost effective data wiping methods for mobile phone.

Multimed Tools Appl 2013;71(2):643–55.

125. Steele RK, Key DS, Abbasi MA, Lutz, BC, inventors. Method and apparatus

for sanitizing or modifying flash memory chip data. US patent application

2009/0113113. 2009 Apr 30.

126. Jevans D, Ficcaglia R, Spencer G, Ryan S, inventors. IronKey Inc, assignee.

Memory data shredder. US patent application 2007/0300031. 2007 Dec 27.

127. Weng WK, Wu HH, inventors. Skymedi Corp, assignee. Secure erase system

for a solid state non-volatile memory device. US patent application 2012/0079289.

2012 Mar 29.

128. Lee J, Yi S, Heo J, Park H, Shin SY, Cho Y. An efficient secure deletion

scheme for flash file systems. J Inf Sci Eng 2010;26(1):27–38.

129. Park S, Kim J, Jung Y, Lim D, Seo Y, Cho Y, Yi S, Lee J, Kim S, Oh J,

inventors. Electronics and Telecommunications Research Institute, assignee. Flash

memory device having secure file deletion function and method for securely deleting

flash file. US patent 8,117,377. 2012 Feb 14.

130. Lee B, Son K, Won D, Kim S. Secure data deletion for USB flash memory.

Journal of Information Science and Engineering 2011;27(3):933–52.

131. Guyot C, Bandic ZZ, Cassuto Y, Espeseth AM, Sanvido M, inventors. HGST

Netherlands BV, assignee. Implementing secure erase for solid state drives. US patent

8,250,380. 2012 Aug 21.

132. Sun K, Choi J, Lee D, Noh SH. Models and design of an adaptive hybrid

scheme for secure deletion of data in consumer electronics. IEEE Trans Consumer

Electron 2008;54(1):100–4.

133. Subha S. An algorithm for secure deletion in flash memories. In: Proceedings

of the Second International Conference on Computer Science and Information

Technology; 2009 Aug 8-11; Beijing, China. Piscataway, NJ: IEEE, 2009;260–2.

134. Brož M, Matyáš V. The TrueCrypt on-disk format-an independent view. IEEE

Security & Privacy 2014;12(3):74–7.

135. Halderman JA, Schoen SD, Heninger N, Clarkson W, Paul W, Calandrino JA,

Feldman AJ, Appelbaum J, Felten EW. Lest we remember: cold-boot attacks on

encryption keys. Commun ACM 2009;52(5):91–8.

136. Müller T, Spreitzenbarth M. FROST: Forensic Recovery of Scrambled

Telephones. In: Proceedings of the Eleventh International Conference on Applied

Cryptography and Network Security; 2013 Jun 25-28; Alberta, Canada.

Piscataway, NJ: IEEE, 2013;373–88.

137. AMD. RAIDXpert user manual, 2010;

http://www2.ati.com/relnotes/AMD_RAIDXpert_User_v2.1.pdf (accessed October

12, 2015).

138. Intel. RAID 0, 1, 5, 10, matrix RAID, RAID-ready, Intel® Rapid Storage

Technology (Intel® RST), 2014; http://www.intel.com/support/chipsets/imsm/sb/CS-

009337.htm (accessed October 7, 2015).

139. Vantage Technologies n.d., RAID 5 data recovery FAQ;

http://www.vantagetech.com/faq/raid-5-recovery-faq.html (accessed October 7,

2015).

http://www2.ati.com/relnotes/AMD_RAIDXpert_User_v2.1.pdf
http://www.intel.com/support/chipsets/imsm/sb/CS-009337.htm
http://www.intel.com/support/chipsets/imsm/sb/CS-009337.htm
http://www.vantagetech.com/faq/raid-5-recovery-faq.html

140. Diesburg SM, Meyers C, Stanovich M, Mitchell M, Marshall J, Gould J,

Wang AA, Kuenning G. TrueErase: per-file secure deletion for the storage data path.

In: Proceedings of the Twenty Eighth Annual Computer Security Applications

Conference; 2012 Dec 3-7; Orlando, FL. New York, NY: ACM, 2012;439–48.

141. Bonetti G, Viglione M, Frossi A, Maggi F, Zanero S. Black-box forensic and

antiforensic characteristics of solid-state drives. Journal of Computer Virology and

Hacking Techniques 2014;10(4):255–71.

142. Linnell TE, inventor. EMC Corp, assignee. Securely erasing flash-based

memory. US patent 8,130,554. 2012 Mar 6.

143. Koren R, Leibinger E, Wiesz N, Zilberman E, Tzur O, Aharonoff S, Teicher

M, inventors. SanDisk IL Ltd, assignee. Methods of sanitizing a flash-based data

storage device. US patent 7,089,350. 2006 Aug 8.

144. Sang W. [RFC 04/10] devfs & mtd: Add MEMERASE ioctl support, 2012;

http://lists.infradead.org/pipermail/barebox/2012-October/010713.html (accessed

October 7, 2015).

145. Jangir ML. Working with MTD devices, Open Source For U, 2012;

http://www.opensourceforu.com/2012/01/working-with-mtd-devices/ (accessed

October 7, 2015).

146. Google n.d. Implementing security;

https://source.android.com/devices/tech/security/implement.html (accessed October 7,

2015).

147. Leom MD, D’Orazio CJ, Deegan G, Choo KKR. Forensic collection and

analysis of thumbnails in Android. In: Proceedings of the Fifth International

Symposium on Trust and Security in Cloud Computing; 2015 Aug 20-22; Helsinki,

Finland. Piscataway, NJ: IEEE, 2015;1059–66.

http://lists.infradead.org/pipermail/barebox/2012-October/010713.html
http://www.opensourceforu.com/2012/01/working-with-mtd-devices/
https://source.android.com/devices/tech/security/implement.html

148. Grupp LM, Caulfield, AM, Coburn, J, Davis, JD, Swanson S. Beyond the

datasheet: using test beds to probe non-volatile memories' dark secrets. In:

Proceedings of the IEEE Globecom 2010 Workshop on Application of

Communication Theory to Emerging Memory Technologies; 2010 Dec 6-10 Miami,

FL. Piscataway, NJ: IEEE, 2010;1930–5.

149. Saxena M, Zhang, Y, Swift, MM, Arpaci-Dusseau, AC, Arpaci-Dusseau RH.

Getting real: lessons in transitioning research simulations into hardware systems. In:

Proceedings of the Eleventh USENIX Conference on File and Storage Technologies;

2013 Feb 12-15; San Jose, CA. Berkeley, CA: USENIX Association, 2013;215-228.

150. Reddy VK, Rao JE. Survey on security in cloud using homographic and disk

encryption methods. International Journal of Computer Sciences and Engineering

2014;2(4):107–12.

151. Larabel M. The performance impact of Linux disk encryption on Ubuntu

14.04 LTS, Phoronix, 2014;

http://www.phoronix.com/scan.php?page=article&item=ubuntu_1404_encryption

(accessed October 7, 2015).

152. Swanson S, Wei M. Safe: fast, verifiable sanitization for SSDs. San Diego,

CA: University of California-San Diego, 2010.

153. Müller T, Latzo T, Freiling FC. Self-encrypting disks pose self-decrypting

risks. In: Proceedings of the Twenty Ninth Chaos Communication Congress; 2012

Dec 27-30; Hamburg, Germany. Hamburg, Germany: Chaos Computer Club, 2012;1–

10.

154. Trusted Computing Group. TCG storage security subsystem class (SSC):

Opal, specification version 2.00, revision 1.0 ed, 2012;

http://www.phoronix.com/scan.php?page=article&item=ubuntu_1404_encryption

http://www.trustedcomputinggroup.org/resources/storage_work_group_storage_securi

ty_subsystem_class_opal (accessed October 7, 2015).

155. Microsoft. Encrypted hard drive, TechNet Library, 2012;

http://technet.microsoft.com/en-us/library/hh831627.aspx (accessed October 7, 2015).

156. Rich D. Authentication in transient storage device attachments. Comput

2007;40(4):102–4.

157. Intel. Intel® solid-state drive pro 1500 series (M.2), Product Specification,

2013; http://www.intel.com/content/dam/www/public/us/en/documents/product-

specifications/ssd-pro-1500-series-m2-specification.pdf (accessed October 7, 2015).

158. Kingston. Kingston introduces optional TCG opal 1.0 compliant SSD, 2013

Flash Press Release, 2013; http://www.kingston.com/us/company/press/article/6979

(accessed October 7, 2015).

159. TCG n.d., Data production solution, Trusted Computing Group;

http://www.trustedcomputinggroup.org/solutions/data_protection (accessed October

7, 2015).

160. Wetzels J. Hidden in snow, revealed in thaw: cold boot attacks revisited, 2014;

http://arxiv.org/abs/1408.0725 (accessed October 12, 2015).

161. Rutkowska J. Evil maid goes after TrueCrypt, The Invisible Things Lab's

blog, 2009; http://theinvisiblethings.blogspot.com/2009/10/evil-maid-goes-after-

truecrypt.html (accessed October 7, 2015).

162. Rutkowska J. Anti evil maid, The Invisible Things Lab's blog, 2011;

http://theinvisiblethings.blogspot.com/2011/09/anti-evil-maid.html (accessed October

7, 2015).

http://www.trustedcomputinggroup.org/resources/storage_work_group_storage_security_subsystem_class_opal
http://www.trustedcomputinggroup.org/resources/storage_work_group_storage_security_subsystem_class_opal
http://technet.microsoft.com/en-us/library/hh831627.aspx
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/ssd-pro-1500-series-m2-specification.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/ssd-pro-1500-series-m2-specification.pdf
http://www.kingston.com/us/company/press/article/6979
http://www.trustedcomputinggroup.org/solutions/data_protection
http://arxiv.org/abs/1408.0725
http://theinvisiblethings.blogspot.com/2009/10/evil-maid-goes-after-truecrypt.html
http://theinvisiblethings.blogspot.com/2009/10/evil-maid-goes-after-truecrypt.html
http://theinvisiblethings.blogspot.com/2011/09/anti-evil-maid.html

163. Tereshkin A. Evil maid goes after PGP whole disk encryption. In: Proceedings

of the Third International Conference on Security of Information and Networks; 2010

Sep 7-11; Taganrog, Russia. New York, NY: ACM, 2010.

164. Sophos. SafeGuard device encryption: OPAL support, Sophos Knowledgebase

Support, 2014; https://www.sophos.com/en-us/support/knowledgebase/113366.aspx

(accessed October 7, 2015).

165. Intel. Data security features in the intel solid - state drive 520 series, Intel SSD

520 Series Technology Brief, 2012;

http://www.intel.com/content/dam/www/public/us/en/documents/technology-

briefs/ssd-520-aes-tech-brief.pdf (accessed October 7, 2015).

166. Lee S, Kim J. Understanding SSDs with the OpenSSD platform. Seoul, South

Korea. Seoul, South Korea: Sungkyunkwan University, 2011.

167. Davis JD, Zhang L. FRP: a nonvolatile memory research platform targeting

NAND flash. In: Proceedings of the First Workshop on Integrating Solid-state

Memory into the Storage Hierarchy; 2009 Mar 7-11; Washington, D.C. New York,

NY: ACM, 2009;1–8.

168. Lee S, Fleming K, Park J, Ha K, Caulfield A, Swanson S, Arvind, Kim J.

BlueSSD: an open platform for cross-layer experiments for NAND flash-based SSDs.

In: Proceedings of the Fifth Workshop on Architectural Research Prototyping; 2015

Jun 19-23; Saint-Malo, France. New York, NY: ACM, 2015;1–5;

http://research.microsoft.com/pubs/198375/WARP2010_BlueSSD.pdf (accessed

October 12, 2015).

169. Bunker T, Wei M, Swanson SJ. Ming II: a flexible platform for nand flash-

based research. San Diego, CA: Department of Computer Science and Engineering,

University of California-San Diego, 2012.

https://www.sophos.com/en-us/support/knowledgebase/113366.aspx
http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/ssd-520-aes-tech-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/ssd-520-aes-tech-brief.pdf
http://research.microsoft.com/pubs/198375/WARP2010_BlueSSD.pdf

170. Mislan RP, Casey E, Kessler GC. The growing need for on-scene triage of

mobile devices. Digital Investigation 2010:6(3-4):112–24.

171. Wakefield J. Devices being remotely wiped in police custody. BBC, 2014;

http://www.bbc.com/news/technology-29464889 (accessed October 7, 2015).

172. Barrett D, Yadron D, Wakaba D. Apple and others encrypt phones, fueling

government standoff. Wall Street Journal, 2014; http://www.wsj.com/articles/apple-

and-others-encrypt-phones-fueling-government-standoff-1416367801 (accessed

October 7, 2015).

173. Hattem J. Crypto wars' return to congress. The Hill, 2014;

http://thehill.com/policy/cybersecurity/221147-crypto-wars-return-to-congress

(accessed October 12, 2015).

174. Timberg C, Miller G. FBI blasts apple, google for locking police out of

phones. The Washington Post, 2014;

http://www.washingtonpost.com/business/technology/2014/09/25/68c4e08e-4344-

11e4-9a15-137aa0153527_story.html (accessed October 12, 2015).

175. Frizell S. Yahoo is making it harder for the NSA to read your emails. TIME,

2014; http://time.com/3092881/email-encryption/ (accessed October 12, 2015).

176. Gustin S. NSA spying scandal could cost U.S. tech giants billions. TIME,

2013; http://business.time.com/2013/12/10/nsa-spying-scandal-could-cost-u-s-tech-

giants-billions/ (accessed October 12, 2015).

http://www.bbc.com/news/technology-29464889
http://www.wsj.com/articles/apple-and-others-encrypt-phones-fueling-government-standoff-1416367801
http://www.wsj.com/articles/apple-and-others-encrypt-phones-fueling-government-standoff-1416367801
http://thehill.com/policy/cybersecurity/221147-crypto-wars-return-to-congress
http://www.washingtonpost.com/business/technology/2014/09/25/68c4e08e-4344-11e4-9a15-137aa0153527_story.html
http://www.washingtonpost.com/business/technology/2014/09/25/68c4e08e-4344-11e4-9a15-137aa0153527_story.html
http://time.com/3092881/email-encryption/
http://business.time.com/2013/12/10/nsa-spying-scandal-could-cost-u-s-tech-giants-billions/
http://business.time.com/2013/12/10/nsa-spying-scandal-could-cost-u-s-tech-giants-billions/

Additional Information — Reprints Not Available From Author:

Kim-Kwang Raymond Choo, Ph.D.

University of Texas at San Antonio

Department of Information Systems and Cyber Security

One UTSA Circle

San Antonio, TX 78249-0631

E-mail: Raymond.Choo@fulbrightmail.org

mailto:Raymond.Choo@fulbrightmail.org

Appendix

TABLE 1—Security features in the existing remote wiping literature.

Feature Ange

lo et

al.

(48)

Brow

n et

al.

(49)

Walk

er &

Fyke

(50)

Kenn

ey

(51)

Hase

be

(52)

Senn

ett &

Daly

(53)

Onyo

n et

al.

(54)

Gajd

os &

Kretz

(55)

Yu et al.

(56)

Park

et al.

(57)

Kuppusa

my et al.

(58)

Joe

&

Lee

(59)

Adusum

alli (60)

Authentic

ate

reporter

Y Y Y Y Y Y N Y Y Y Y Y N

Authentic

ate origin

of wipe

command

Y Y N N N Y Y Y Y N Y N N

Secure

wipe

command

N Y N N N N N N N N N N N

Transmiss

ion

channel

Inter

net

Inter

net

Cellu

lar

Cellu

lar

Inter

net

Cellu

lar

Inter

net

Inter

net

Cellular

(Emerge

ncy call)

Cellu

lar

(SMS

)

Cellular

(SMS)

Inter

net

Cellular

(SMS)

Secure

delete

N Y N N N Y Y Y Y N N N N

Ensure

wiping

operation

is

completed

N Y N N N N N N Y N N N N

Acknowle

dge

source

that wipe

is

completed

N N N Y N N N Y N N N Y Y

Replay

attack

mitigation

Y N N N N N N N N Y N Y N

TABLE 2—Authentication methods in the existing remote wiping literature.

 Biometrics Certificate Password Secret

question

Username and

password

Identification

information

Angelo et al. (48) ● ●

Brown et al. (49)

Walker & Fyke (50) ●

Kenney (51) ● ●

Hasebe (52) ●

Sennett & Daly (53) ●

Onyon et al. (54)

Gajdos & Kretz (55) ●

Yu et al. (56) ● ●

Park et al. and Kuppusamy et al.

(57, 58)

 ●

Joe & Lee (59) ● ●

Adusumalli (60) ●

TABLE 3—Summary of methods used to authenticate origin of wipe command.

 Public key

cryptography

Shared code /

password

Incoming

number

Angelo et al. (48) ●

Brown et al. (49) ● ●

Sennett & Daly (53) ●

Onyon et al. (54) ● ●

Gajdos & Kretz (55) ● ●

Yu et al. (56) ●

Kuppusamy et al.

(58)

 ●

TABLE 4—Deletion method of factory reset in AOSP (adapted from Simon and Anderson

(97)).

 Android version

Code Partition Froyo GB 4.0.x (ICS) JB KK

Android media format() ioctl(BLKDISCARD)

External SD None

Recovery data ioctl(MEMERASE) ioctl(BLKDISCARD) ioctl(BLKSEDISCARD)

TABLE 5—Device specification.

Device Motorola Moto G Samsung Nexus S LG Nexus 4

Model XT1033 GT-I9020T LGE960

Android OS 4.4.2 4.1.2 5.1

Android

Build

KXB20.25-1.31 JZO54K LMY47O

Linux kernel 3.4.0 3.0.31 3.4.0

Storage 8 GB 16 GB 8GB

RAM 1 GB 512 MB 2 GB

TABLE 6—Comparative summary of existing secure deletion techniques.

Technique Advantages Disadvantages Evaluation criteria /

claimed features (for

approaches without an

experiment)

Research set-up

User-space

Spreitzenbart

h & Holz
(116)

 Simple to
implement.

 No OS
modification

required.

 Cross-platform.

 Does not
provide wear-

levelling.

 Limited data
type support.

 Data
recoverability

 Experiment
using Nokia E90

(Symbian

9.2)/S60
platform

Reardon et al.

(121)
 Data type

agnostic.

 Provides wear-

levelling.

 Excessive

writes or wear
on storage.

 Slow

 Effects of

different

parameter on

deletion latency

and lifetime.

 Battery

consumption.

 HTC Nexus One

Albano et al.

(122)
 Simple operation.

 Data type
agnostic,

 No OS
modification

required.

 Does not

provide wear-
levelling.

 Works on
Android or any

Linux-based OS

only.

 Requires root

and Busybox
installed on

Android.

 Slow.

 Data

recoverability

 HTC Nexus One

(MIUI ROM
based on

Android v2.3.4)

Kang et al.

(124)
 Efficiency as only

parts of data needs
to be overwritten.

 Does not

provide wear-
levelling.

 Limited data

type support.

 Data

recoverability

 Deletion time

 Samsung

Galaxy S3

Steele et al.

(125)
 Wipe several USB

flash drives

simultaneously.

 Questionable

motivation behind
the proposal.

 Does not

address wear-

levelling.

NA NA

Jevans et al.

(126)
 Resume

interrupted

wiping.

 Limited wear
levelling.

NA NA

File system

Weng & Wu
(127)

 Only small data
(key) needs to be

deleted.

 No mention of
secure deletion

for keys.

NA NA

Lee et al.
(128) and

Park et al.

(118)

 Encryption keys
are arranged

closely for faster
delete operation.

 Excessive wear
on flash storage.

 Conceptual (yet
to be

implemented /

evaluated).

 Amortized
number of

block erase

 No experiment
conducted

Lee et al.

(130)
 Incorporate US

government

standards

 More efficient

than (89) and
introduce less

wear on flash

storage.

 Conceptual (yet

to be

implemented /
evaluated).

 Amortized

number of

block erase

 No experiment

conducted

Guyot et al.

(131)
 Method to remove

duplicates of

deleted data
provided.

 Latency of

garbage

collection
operation.

NA NA

Reardon et al.

(103)
 Can be modified

into full disk
 Designed for

UBIFS, a file
 Execution time

for various file

 HTC Nexus One
(Linux

Technique Advantages Disadvantages Evaluation criteria /

claimed features (for

approaches without an

experiment)

Research set-up

encryption for

confidentiality.

system not

found in
Android but

supported by

the Linux
kernel.

 Depends on
now defunct

MTD

system

functionality

(e.g.

mount/unmount

, read/write)

 Power
consumption

v2.6.35.7)

Sun et al.

(132)
 Hybrid scheme

which chooses

faster method by

evaluating the
nature of data

location.

 Latency during
cost calculation.

 Time taken to
complete

various

workloads.

 Embedded
board 400MHz

Intel XScale

CPU, 64MB
SDRAM, 64MB

Samsung

NAND flash
memory.

Choi et al.

(118)
 Compatibility with

TRIM

 Verify the data has

been overwritten

 Additional

operations
increase

deletion time.

NA NA

Physical

Wei et al.

(107)
 Almost native

performance

 May result in

writing error.

 Possible

violation of

flash storage’s
specification.

 Write latency

 Secure deletion
latency on

different flash

storage and
applications

 Custom-built

FPGA-based
flash testing

hardware on 16

chips spanning 6
manufacturers, 5

technology

nodes covering
both MLC and

SLC chips

Qin et al.

(119)
 Use RAID-5 to

mitigate negative

effect of

reprogram.

 Require
multiple drives

for RAID; thus

not cost-
effective /

suitable for

general
consumer

usage.

 Read/write
response time

 Simulator
SSDsim

Subha (133) Least data to be
affected thus very

fast deletion time.

 Access to ECC
is questionable.

 Deletion time C program
running on

Linux file

system to
simulate ECC,

with a Rich Text
File (RTF) as

input data.

Diesburg et

al. (140)
 Most

comprehensive

approach

 Complex to
implement

6. Data

recoverability

 Disk

performance

SanDisk’s DiskOnChip

with Inverse NAND

 File Translation

Layer (INFTL)
kernel module

on Linux

2.6.25.6

Linnell (142) FTL

compatibility.

 Slower than

simple zeroes

overwriting in

some cases.

NA NA

Koren et al.

(143)
 Erase operation is

independent from

host device (OS

and motherboard).

 Resume

interrupted
wiping.

 Does not
provide wear-

levelling

NA NA

TABLE 7—Key differences between hardware- and software-based implementations

(Adapted from Choi et al. (118)).

 Hardware-based approach Software-based approach

Performance Generally higher Slower

Security issue ‘Hot plug’ attack ‘Cold boot’ and related attacks

Verifiability Difficult Possible

Ease of implementation Hard Easy

Cost High Low

TABLE 8—Remote wiping and secure flash storage deletion publications by research focus.

Publications Years Research focus

Angelo et al. (48), Kenney (51), Hasebe (52) 1999-2005 Remote wiping

Onyon et al. (54), Gajdos & Kretz (55) 2006-2010

Brown et al. (49), Park et al. (57), Joe & Lee (59) 2011

Kuppusamy et al. (58) 2012

Walker & Fyke (50) 2013

Yu et al. (56), Adusumalli (60) 2014

Sun et al. (132), Jevans et al. (126), Koren et al. (143) 2006-2008 Secure flash storage

deletion Spreitzenbarth & Holz (116), Steele et al. (125), Lee et

al. (128), Subha (133)

2009-2010

Wei et al. (107), Albano et al. (122), Lee et al. (130) 2011

Linnell (142), Reardon et al. (121), Weng & Wu (127),

Park et al. (129), Guyot et al. (131)

2012

Reardon et al. (103), Qin et al. (119), Kang et al. (124) 2013

Choi et al. (118) 2014

TABLE 9—Recovered data by Cellebrite.

Cellebrite Moto G

Nexus S

Nexus 4

Data types Pre-wipe Post-wipe Pre-wipe Post-wipe Pre-wipe Post-wipe

Call log 12 0 0 0 10 0

Chats 0 0 0 0 0 0

Google Talk 1 0 0 0 0 0

Hangouts 2 0 0 0 2 0

Kik 2 0 0 0 1 1

Contacts 31 0 0 0 31 0

Cookies 516 0 0 0 20 0

Emails 45 0 0 0 2 0

Installed

applications

41 0 0 0 49 0

Passwords 6 0 0 0 6 0

Powering Events 1 0 0 0 3 0

Searched items 1 0 0 0 0

SMS 1 0 0 2 3 0

Timeline 718 0 0 2 172 0

User accounts 9 0 0 0 9 0

Web bookmarks 50 0 0 0 50 0

Web history 57 0 0 0 40 0

Wireless networks 1 0 0 0 1 0

Data Files 0 0 0 0 0

Applications 434 3 0 0 381 0

Audio 31 0 32 0 32 0

Databases 226 1 0 0 178 0

Documents 180 0 213 0 181 0

Images 1910 0 756 0 1363 0

Text 362 2 1 0 289 0

Videos 35 0 35 0 35 0

Carved Images 1375 2 6238 2759 966 0

Activity analytics 58 0 0 0 36 0

Analytics emails 0 0 0 0 0 0

user email 3 0 0 0 4 0

Uncategorized 19 0 0 0 0 0

Analytics phones 32 0 0 0 30 0

Skype 1 0 0 0 1 0

TABLE 10—Recovered data by IEF.

IEF Moto G

Nexus S

Nexus 4

Data type Pre-

wipe

Post-

wipe

Pre-

wipe

Post-

wipe

Pre-

wipe

Post-

wipe

Google Analytics First Visit Cookies 23 0 0 0 0 0

Google Analytics Referral Cookies 23 0 0 0 0 0

Google Analytics Sessions Cookies 23 0 0 0 0 0

Google Analytics URLs 33 0 0 0 0 0

Google Searches 1 0 0 0 0 0

Social Media URLs 107 0 0 0 2 0

Chat 0 0 0 0 0 0

Skype accounts 1 0 0 0 1 0

Skype Contacts 2 0 0 0 2 0

Skype IP Addresses 0 0 0 0 2 0

Chat 0 0 0 0 0 0

Google Drive 2 0 0 0 4 0

Documents 0 0 0 0 0 0

Excel 36 0 36 7 36 0

PDF 38 0 30 30 36 0

PowerPoint 60 0 60 30 60 0

Text 77 0 0 0 22 0

Word 60 0 30 30 60 0

Media 0 0 0 0 0 0

Carved video 52 0 41 38 43 0

Pictures 17946 2 8202 7682 14321 0

Videos 35 0 35 0 35 0

Web related 0 0 0 0 0 0

Browser Activity 368 0 0 0 20 0

Chrome bookmarks 0 0 0 0 50 0

Chrome cookies 516 0 0 0 20 0

Chrome favicons 63 0 0 0 39 0

Chrome logins 2 0 0 0 2 0

Chrome top sites 1 0 0 0 40 0

Chrome web history 55 0 0 0 40 0

Chrome web visits 108 0 0 0 1 0

Chrome/360 Safe Browser/Opera

Carved web history

171 0 0 0 0 0

Firefox web history 10 0 0 0 13 0

Google Analytics First Visit Cookies 37 0 0 0 0 0

Google Analytics Referral Cookies 25 0 0 0 0 0

Google Analytics Sessions Cookies 41 0 0 0 0 0

Google Analytics URLs 33 0 0 0 0 0

Google maps 18 0 0 0 10 0

Google maps tiles 22 0 0 0 0 0

Safari history 0 0 0 0 9 0

TABLE 11—Recovered data by PhotoRec.

PhotoRec Moto G

Nexus S

Nexus 4

Data type Pre-wipe Post-wipe Pre-wipe Post-wipe Pre-wipe Post-wipe

docx 47 0 0 0 53 0

http cache 5 0 0 0 31 0

jar 13 0 0 0 9 0

java 17 0 39 39 95 0

jpg 538 0 460 460 459 0

mp3 30 0 373 373 34 0

ogg 3 0 2 2 4 0

pdf 15 0 6 6 18 0

png 101 0 49 49 372 0

pptx 20 0 1 1 23 0

sqlite 9339 7 1 1 178 0

txt 500 0 811 811 2577 2

xlsx 7 0 1 1 4 0

zip 15 0 3 3 4 0

.

TABLE 12—Recovered thumbnail by Scalpel.

Scalpel Moto G

Nexus S

Nexus 4

 Pre-wipe Post-wipe Pre-wipe Post-wipe Pre-wipe Post-wipe

No. of thumbnails recovered 885 0 564 564 664 0

FIG. 1—General overview of the remote wiping process

Legend: (a) Authenticate reporter

 (b) Authenticate origin of wipe command

 (c) Secure wipe command

 (d) Transmission channel

 (e) Secure delete

 (f) Ensure wiping operation is completed

 (g) Acknowledge source that wipe is completed

 (h) Replay attack mitigation

FIG. 2—Push messaging architecture. Adapted from (67, 70)

FIG. 3—Data access layers in flash storage. (Adapted from 43, 98)

FIG. 4—Decryption process in Truecrypt and Choi et al. (118).

	Abstract
	Reviews of Remote Wiping and Secure Flash Storage Deletion
	General Review of Remote Wiping
	Authenticate Reporter
	Authenticate Origin of Wipe Command
	Secure Wipe Command
	Secure Delete
	Ensure Wiping Operation is Completed
	Acknowledge Source that Wipe is Completed
	Replay Attack Mitigation
	Vendor Implementation
	Android
	BlackBerry
	iOS
	Windows Phone
	Vulnerabilities

	Summary

	Secure Flash Storage Deletion
	Flash Storage: An Overview
	Flash Storage Layers and Structures
	Data Overwriting in Flash Storage

	Classification of Secure Flash Storage Deletion
	User-space Layer
	File System Layer
	Physical Layer

	Android Implementation
	Case Study on Android Approach

	Discussion
	Limitations of Existing Literature
	Lack of Data Recovery Evaluation
	Limitation of Using Simulation in Evaluations
	Performance
	Possible Attacks

	Summary

	Concluding Remarks
	References
	Appendix

