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Abstract 

Mobile devices have become ubiquitous in almost every sector of both private and 

commercial endeavour. As a result of such wide-spread use in everyday life, many users 

knowingly and unknowingly save significant amounts of personal and/or commercial data on 

these mobile devices. Thus loss of mobile devices through accident or theft can expose users 

– and their businesses – to significant personal and corporate cost. To mitigate this data 

leakage issue, remote wiping features have been introduced to modern mobile devices. Given 

the destructive nature of such a feature, however, it may be subject to criminal exploitation 

(e.g. a criminal exploiting one or more vulnerabilities to issue a remote wiping command to 

the victim’s device). To obtain a better understanding of remote wiping, we survey the 

literature, focusing on existing approaches to secure flash storage deletion and provide a 

critical analysis and comparison of a variety of published research in this area. In support of 

our analysis, we further provide prototype experimental results for three Android devices; 

thus, providing both a theoretical and applied focus to this paper as well as providing 

directions for further research. 
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Mobile devices have become increasingly ubiquitous and no longer used only for making and 

receiving phone calls. Examples of such usage include receiving and sending email and 

instant messages, making VoIP calls, taking and uploading of photos and video clips, and 

finding one’s way around using mapping apps; all of which results in an increasing amount of 

data (and metadata such as geolocation) stored and transmitted from such devices. Due to the 

size of these devices, they can be easily lost or stolen. For example, the number of mobile 

devices reported lost or stolen every year include an estimated 150,000 in Australia in 2011 

(1), and 30,000 in London alone in 2013 (2).  

With the advent of cloud storage services (e.g. Dropbox, Apple's iCloud, and Google Drive), 

mobile device users are able to synchronise the data stored on their devices to their cloud 

storage accounts. There is, however, potential for information leakage should the account be 

compromised (e.g. the compromising of several celebrities' online accounts (3, 4, 5) or when 

the device is lost, stolen or compromised (e.g. via malware). Physical theft and loss of 

devices are among the most common cause of data leakage in organisations according to the 

2014 study by (6). The cost of the hardware and software due to lost or stolen devices is 

generally less than the direct and indirect cost resulting from the leakage of the information. 

In a study by (7), 50 mobile devices were intentionally “lost” and then monitored for any 

access attempt, resulting in 96% of these devices being reportedly accessed by the finders of 

these devices (perhaps due to the inherent curiosity of human nature). The study also 

highlighted the difficulty for device owners to regain possession of the devices as only 50% 

of the “lost” devices in this study were actually recovered even though the owner's contact 

information was clearly shown on the device.  

To mitigate the issue of data leakage due to lost or stolen devices, the remote wiping feature 

has been introduced to modern mobile devices such as iOS, Android, Windows Phone and 

BlackBerry devices. This feature allows the device owner to send a remote command to wipe 

the contents on the lost or stolen device. Such a command has been referred to as “kill pill” 

(8, p. 8) or “poison pill” (9, p. 57; 10, p. 3) in the literature.  

The earliest implementations of this remote wiping feature were on Blackberry devices (11, 

12) and the now defunct Microsoft Windows Mobile (succeeded by Windows Phone) (13, 14, 

15) in 2005. It is not surprising as BlackBerry devices are known for their security features 

and one of the first devices to be approved by government use (16, 17, 18). Remote wiping 

was introduced to Apple’s iPhones in 2009 through a service known as “Find My iPhone” 



(19). “Find My iPhone” service was initially only available to the now defunct MobileMe 

(replaced by iCloud and discontinued from June 2012 (20) subscription. It was not until the 

release of iOS 4.2 released in November 2010 (21) that “Find My iPhone” service became a 

free service (22). In August 2013, Google introduced the remote wiping feature by way of the 

Android Device Manager (ADM) to devices running Android 2.2 or above (23). This has 

become an official feature of Android devices, which was previously only available to 

Google Apps customers (24) or via a third-party app (e.g. Cerberus and SeekDroid). 

Remote wipe functionality can be a very useful feature in helping to prevent information 

leakage when a mobile device is no longer in the owner’s possession due to theft, robbery, or 

simply misplaced. Given the destructive nature of this function, however, an attacker might 

misuse this function by sending such commands to the normal users to cause serious 

disruption. Thus, it is very important to ensure that the wipe command can only be triggered 

by the owner or authorised person.  

The purpose of this survey and the prototype experiment is to provide an in-depth 

understanding of the current state of play. Once a mobile device has been remotely wiped, the 

deleted data should be irrecoverable. Since the majority of the mobile devices found today 

use flash storage, also known as NAND flash memory (25), we discuss how secure deletion 

is addressed on this particular type of storage. 

Remote wiping is one of several anti-theft methods for mobile device. Other anti-theft 

methods include remote tracking, data loss prevention (DLP) systems deployed in enterprise 

environments, and tools that activate self-destruction upon predetermined conditions. In this 

survey, we limit our discussion to systems that wipes itself only when the user triggers it.  

One common approach to mitigating data leakage is through storage encryption (i.e. 

encrypting of data-at-rest on the device). In mobile device, storage encryption has been 

available to BlackBerry version 4.0 or above (26), Apple iOS since introduction of iPhone 

3GS (27, 28), Windows Mobile 6.5 (29) and reintroduced back in Windows Phone 8 (30, 31). 

Storage encryption has also been available to Android device users version 3.0 (Honeycomb) 

(32). Google initially announced that all devices shipped with version 5.0 (Lollipop) would 

have storage encryption enabled by default (33). Due to performance issue (34), it is not 

enabled on every new Lollipop device (35), despite the optimisations implemented later (36, 

37, 38). Despite the initial announcement, storage encryption was never made mandatory for 

existing device upgrading to Lollipop. In our prototype experiments to be described in “Case 



Study on Android Approach” section, we will, therefore, not use encryption on our Lollipop 

device – the Motorola Moto G, as it is not enabled by default. 

Prior to version 4.4 (KitKat), the encryption key was stored in flash memory and encrypted 

with a weak key derivation function (KDF), PBKDF2 with 2,000 iterations only. This made 

extraction and brute forcing the encrypted key fairly trivial. KitKat replaced the KDF with 

scrypt – a password-based key derivation function, which was specifically designed to make 

it costly to perform large-scale custom hardware attacks by requiring large amounts of 

memory and thus making brute forcing more expensive (39). On Lollipop, the key is 

encrypted with a master key that is not stored in flash memory and cannot be extracted even 

with root access (40). This has made unauthorised access to encrypted flash memory much 

more difficult. 

However, no matter how secure the key is, existing law can compel a person to surrender the 

key (e.g. 41, 42). There is also a misconception that secure deletion is unnecessary when 

storage encryption is available since all the data is secured. Secure deletion is a condition 

where an “adversary is given access to the system but not able to recover the deleted data 

from the system” (43, p. 301). However, cryptography is only effective due to computational 

cost (44) given the best cryptanalysis tools currently available. Given advances in 

cryptanalysis and quantum cryptography, there is no guarantee that the data resided even in 

encrypted form, could not be deciphered by an adversary in the near future. Any future 

vulnerability(ies) in the device hardware or software may be exploited by an adversary to 

gain unauthorised access to the decryption key. Thus, secure deletion methods that can ensure 

deleted data removed from storage might still be relevant is also discussed in this paper. 

In this paper, we located 15 patents and 18 academic publications published in English 

between November 1999 and June 2014. On the remote wiping topic, materials were located 

using Google Scholar (including Google Patents) and academic databases such as 

ScienceDirect, ACM Digital Library, IEEE, and Springer using search terms such as remote 

(wipe OR wiping), (sanitize OR sanitization) mobile phone, secure (erase OR delete) (flash 

OR NAND). 

Past surveys on secure deletion (43, 45) investigated two common types of non-volatile 

memory, namely; magnetic hard drive and flash memory. Our discussion in “Secure Flash 

Storage Deletion” section, however, focuses on flash memory only. Similar to (43), our 

discussion on secure deletion does not include information deletion – which encompasses 



searching and removing all traces of some information. There are two approaches to secure 

deletion, namely; data overwriting or encryption, and physical destruction (e.g. disk crusher, 

degaussing, incineration) (46). The main difference is that the second approach will render 

the drive unusable; thus, irrecoverable (47) while the first approach does not. Our discussion 

is, therefore, limited to the first approach and neither does it focus on any specific data 

storage mechanism such as database or cloud storage.      

This work is organised as follows. “Reviews of Remote Wiping and Secure Flash Storage 

Deletion” section reviews existing approaches to remote wiping, and in particular, secure 

deletion techniques. This section also includes a prototype experiment on remote wiping 

using three Android devices. “Discussion” section discusses the limitation of existing 

approaches and finally, “Concluding Remarks” section concludes the paper and outlines 

potential future work. 

 

Reviews of Remote Wiping and Secure Flash Storage Deletion  

 

General Review of Remote Wiping 

 

In this section, we discuss relevant publications on remote wiping which include eight patents 

and five academic publications. 

The remote wiping process (Fig. 1) can generally be described as follow: 

1. A user enrols with the remote wiping system maintained by an organisation. When the 

mobile device is lost, the user reports this to the same organisation and requests for 

the mobile device to be wiped. 

2. The organisation sends the wiping command to the intended mobile device. 

Depending on the transmission channel, the command may be sent through a wireless 

access point (AP) using an Internet connection, or via a traditional 3G/4G mobile 

communication channel. 

3. Upon receiving the wipe command, the mobile device erases the data. 

Table 1 provides a summary of the security properties for the relevant references and these 

are further illustrated in Fig. 1. 



Authenticate Reporter 

 

A system should verify the identity of the reporter and the device’s owner when a mobile 

device is reported lost or stolen. This can be done through information known only to the user 

(e.g. account number, address, and last bill number). Existing authentication methods 

considered by the literature are summarised in Table 2. 

Brown et al. (49) considered only the authorisation level to determine the data type that the 

reporter or any person who initiate the remote wipe, is permitted to wipe. The proposed 

scheme did not indicate any means of authenticating the identity of the reporter.  

Several high-profile hacks (3, 4, 61, 62) have demonstrated that using a secret question or 

personal identifiable information alone is not sufficient to authenticate a person. The victim’s 

account may be compromised because an adversary is able to answer a secret question by 

supplying publicly available information deduced from the Internet. Those incidents could 

have been prevented with two-factor authentication. 

Nearly half of the proposals specified more than one mechanism for authenticating the 

reporter but they did not consider multi-factor authentication. Of these proposals, only (56) 

proposed inclusion of two-factor authentication even though it was not explicitly indicated in 

the original proposal. In the proposal of (56), the authentication process involves two steps; 

firstly the reporter submits personal identifiable information to identify themselves to the 

service provider, then they provide a PIN code to be verified by the mobile device. Thus, it 

can be considered as two-factor authentication, even though the authentication is performed 

by two entities; service provider and mobile device. 

 

Authenticate Origin of Wipe Command 

 

When receiving the wipe command from any channel (e.g. 3G/4G channel or web server via 

the Internet), the mobile device should check whether the source is authorised to send the 

command or instruction. 

Existing literature generally prefers the use of public key cryptography. Pretty Good Privacy 

(PGP) is one such popular encryption system - a sender first creates a digital signature by 

hashing the message and encrypts the hash with its private key to sign the message. The 

sender then encrypts the signed message with the recipient’s public key. Only the recipient 



can decrypt the message with its private key and verify the message using the sender’s public 

key.  

Onyon (54) suggested storing the sender’s public key when enrolling into the remote wiping 

system. Brown et al. (49) and Gajdos & Kretz (55) assumed the sender’s public key has been 

stored on the mobile device during manufacturing. Angelo et al. (48) suggested a signature-

based approach whereby the sender encrypts the message with the recipient’s private key. 

The signed message can then be decrypted by the recipient using its own public key. 

Authentication can also be established using a shared code between the sender and the 

recipient. In SSL/TLS, for example, a symmetric key is exchanged using public key 

cryptography. However, Brown et al. (49), Onyon et al. (54) and Gajdos & Kretz (55) did not 

consider the need to protect the shared code. Without any protection, the shared code could 

be exposed allowing an adversary to spoof as a valid sender or recipient. 

Park et al. (57) and Yu et al. (56) proposed a mechanism to request a password from the 

reporter, which will be sent with the wipe command. The mobile device authenticates the 

password to determine the authenticity of the wipe command. But this mechanism could only 

authenticate the reporter, since if a correct password is provided, then any server can send the 

command, and the mobile device will simply accept it. Thus, this mechanism is considered to 

be more suitable to authenticate the reporter. Additionally, it is important to consider the 

response mechanism when dealing with an incorrect password. If there is no limit to the 

number of failed attempts, this will allow an online brute-force dictionary attack. Therefore, it 

is recommended that the system lock the account should the number of failed attempted 

exceed a predetermined limit. 

Kuppusamy et al. (58) proposed a system that checks the incoming telephone number of the 

received SMS against trusted numbers. This is a failback mechanism when the message is not 

secured through the authentication method proposed by Park et al. (57). Instead of using this 

as a failback mechanism, the system should always check the incoming number as origin 

authentication, with the trusted number set beforehand. This mechanism can reduce the 

possibility of a replay attack (see “Replay Attack Mitigation” section) unless the number is 

spoofed. Guo et al. (63) assuming the telephone number is checked separately and not 

embedded inside the encrypted or encoded message. 

 



Secure Wipe Command 

 

The “wipe” command sent as a message or packet should be secured against sniffing to avoid 

tampering. Surprisingly, only Brown et al. (49) considered encrypting the wipe command 

despite the potential for the wipe command to be hijacked and modified. 

 

Secure Delete 

 

The wiping process should result in the wiped data being irrecoverable, and secure deletion is 

discussed further in “Secure Flash Storage Deletion” section. 

Brown et al. (49) and Onyon et al. (54) proposed overwriting the wiped data with zeroes, 

ones, or random combination of them. Sennett and Daly (53) proposed permanent physical 

self-destruction. Gajdos and Kretz (55) proposed self-destruction by overwriting the 

firmware. Yu et al. (56) only mentioned the future possibility of incorporating a secure 

deletion solution. Although the patent by Kenney (51) does not provide secure deletion, it 

proposed a method to render data stored on the device inaccessible. The latter is similar to the 

approach undertaken by Apple where data is ‘wiped’ by rendering all files cryptographically 

inaccessible when the file system key used to encrypt the files is deleted (64).  

The secure deletion method described in the patent by Brown et al. (49), and owned by 

BlackBerry, Inc (formerly known as Research In Motion, RIM), is deployed on BlackBerry 

devices. The pattern or process differs between the OS versions, type of storage, and type of 

data (65, 66). The difference between “flash storage” and “user files” is that user files refer to 

a portion of storage that allows user file-level access. Typical, “user files” is used to store 

media files such as pictures and videos. “Flash storage” in this case includes the rest of user’s 

data such as contacts, SMS, e-mail, calendar entries, etc (66, p. 45), but does not include the 

operating system (OS). This level of wiping is also commonly known as a factory reset. 

 

Ensure Wiping Operation is Completed 

 

This feature if implemented ensures that the wiping process is completed successfully, even 

when it is interrupted by switching off the mobile device as the process will resume once the 

mobile device is switched back on. When a device is switched off, it would be challenging 



for an adversary to gain access to the data stored on the device even though the wiping 

process might be interrupted. Only Brown et al. (49) and Yu et al. (56) considered this aspect 

in their approaches. 

 

Acknowledge Source that Wipe is Completed 

 

The lost mobile device informs the owner or the system operator that the wiping operation 

has been completed successfully. 

Kenney (51) suggested using a handshake, ACK or NACK (Negative ACK, also known as 

NAK), or ping. Sennett and Daly (2013) suggested broadcasting a signal to indicate that the 

mobile device has received a valid command and will proceed to execute the command. The 

latter, however, does not specifically check that the mobile device has successfully completed 

the task. Adusumalli (60) and Joe and Lee (59) suggested using SMS and “service complete 

code” to confirm successful execution of command respectively. 

 

Replay Attack Mitigation 

 

If an adversary manages to capture the command, the adversary can send the same command 

to another device to wipe it. In other words, the adversary can conduct a “Replay attack” by 

replaying a previous request made by a reporter to wipe the new (replacement) device.  

Angelo et al. (48) proposed using timestamp, non-repeating sequence number, and a 

randomly generated number to mitigate replay attack. Similarly, Park et al. (57) also suggest 

using a concatenation of the wipe command and the timestamp using Base64 encoding to 

mitigate replay attack (referred to as reply attack). This measure is, however, ineffective as an 

adversary is able to decode the message, modify the timestamp so that the timestamp fulfils 

the requirement, and re-encode the modified concatenated message. It is recommended that 

the suggested approaches of Angelo et al. (48) and Park et al. (57) be deployed using 

encryption to avoid modification of the wipe command. 

 



Vendor Implementation 

Android 

 

The remote wiping feature was officially introduced into Android via ADM (Android Device 

Manager) (23), which was previously only available via a third-party app. ADM is remotely 

controlled via Google Cloud Messaging (GCM). GCM is a push messaging service used in 

the Android platform that enables developers of mobile applications (apps) to deliver data to 

their apps running on their customers’ mobile devices. With push messaging, a developer can 

push notifications, messages and even commands to the apps, without continuous polling 

from the apps which consumes resources. A developer operates a server (referred to as app 

server) to send data to the app installed in a particular user’s device. In push messaging, the 

app server does not directly initiate the connection to the mobile device. Instead, the data is 

relayed through the provider of the push messaging service (referred to as connection server). 

In addition, any message received from the connection server is processed by the service 

client (akin to OS service) before passing to the app (Fig. 2). The connection server usually 

restricts the data size, and in this case, the mobile device can be instructed to download the 

data from an app server. Before an app can receive data through the GCM service, it needs to 

register itself to the service with a registration ID and also the app server’s sender ID. This 

allows the cloud server to associate an app server with an app installed on a particular mobile 

device. Thus, only an app server with an authorised sender ID can push a message to the app 

with related registration ID (67).  

ADM utilises Android Device Administration API to execute wiping operation (68, 69). This 

API is also available to a third-party app provider for mobile device management (MDM) 

features at the system level. An IT administrator can write application that a user installs on 

the mobile device to enrol into the MDM system of the company. The API only provides a 

factory reset functionality, and a developer could choose to use GCM or any other method to 

trigger the wipe remotely.  

 

BlackBerry 

 

Remote wiping can be triggered via BlackBerry Enterprise Server (BES) for corporate 

environments or BlackBerry Protect for personal customers. The device is preloaded with a 



root certificate during manufacture which authenticates using the BES (71). BES also has the 

ability to track wiping status of the device (72), a property discussed earlier (“Acknowledge 

Source that Wipe is Completed” section).  

Devices enrolled in BlackBerry Protect cannot be associated with BES. In BlackBerry 

Protect, the user has the ability to instruct the lost device to perform back-up (to BlackBerry 

Protect service) before full wiping when running BlackBerry OS version 7.1 or earlier (73). 

Later version does not have this feature. 

 

iOS 

 

Remote wiping can be triggered via iCloud (for personal consumers) or third-party mobile 

device management (MDM) system (for corporate environments). Third-party MDM utilises 

either Apple’s MDM API or Exchange ActiveSync (EAS) (64). In the third-party MDM 

system, an employee’s mobile device is managed from a MDM server installed with software 

provided by the MDM provider. The server creates a configuration profile (75), which is 

uploaded to Apple’s server. A user then downloads and installs the configuration profile to 

enrol into the system. This configuration profile allows the system administrator to have 

control over the employee’s iOS device including the ability to remotely wipe. Subsequently, 

whenever the MDM server wants to communicate with an iOS device, it does so via Apple’s 

Push Notification Service (APNS), a push messaging protocol (70) secured with SSL/TLS 

(74), instructing the device to check in. The iOS device then initiates SSL/TLS connection 

with the server to check in. The server uses the connection to perform administrative tasks 

including remote wiping. According to official Apple documentation (64), when performing 

remote wipe, the mobile device will reply with an acknowledgement upon receiving the wipe 

command. The device only checks in when using EAS; thus, it appears that the wipe 

command via a single “push” message is sent by the MDM server through APNS without the 

device checking in. 

 

Windows Phone 

 

Remote wipe can be initiated via the Exchange Management Console (EMC), Microsoft 

Outlook Web Access (OWA), or a third-party MDM system depending upon how the mobile 



device was enrolled initially. The wipe command is sent via the ActiveSync protocol. 

ActiveSync is a push messaging protocol used for exchanging messages in the Microsoft 

Exchange environment (76).  

The mobile device can either be partially wiped or fully wiped. Partial wipe applies whenever 

the device “un-enrols” or “retires” from the corporate MDM system. All the corporate 

information, email accounts, VPN connections, Wi-Fi connections, policy settings, apps, and 

data that the apps deployed are removed, except for personal apps or data on the device that 

the user installed. Full wipe removes all the apps and information on a device and returns the 

device to factory settings. (77) 

 

Vulnerabilities 

 

Implementations of the ActiveSync protocol in Android and iOS were discovered to be 

flawed (78). The implementations failed to warn the user when presented with untrusted SSL 

certificates and in some cases they will accept any certificate presented. This vulnerability 

can be exploited to spoof an Exchange server to initiate unauthorised policy enforcement 

such as performing remote factory reset on a mobile device. Similar flaw was also discovered 

in some Android apps due to the incorrect use of the Android API when implementing SSL. 

Consequently, these apps are insecure against man-in-the-middle (MitM) attacks (79, 80). 

SSL certificate validation was also found to be broken in Amazon’s EC2 Java library (81) 

and Apple’s SecureTransport library (82). These flaws highlighted the potential risk posed by 

SSL implementation in non-browser applications, which have not evolved to the degree that 

web browsers have (81). Such risk could extend to other remote wiping applications that 

utilises SSL. 

There was a flaw previously found in Google Cloud Messaging (GCM) that allowed an 

adversary to control the ADM installed on the victim’s device (67). As mentioned in 

(“Android” subsection of “Vendor Implementation” section), before an app can receive a 

message through GCM, it needs to register itself to the service with a registration ID and also 

app server’s sender ID. This allows a connection server to identify to which mobile device 

and app to push the message. With a malicious app installed on the victim’s device which 

acts as a man-in-the-middle (MitM), an adversary can intercept the registration request and 

steal the registration ID, in this case registration ID of ADM. The adversary can then proceed 



to control the ADM with the stolen registration ID. In addition, the connection server is 

supposed to only allow the authorised app server to push a message by checking the sender’s 

ID. However, this policy is not enforced and can allow an adversary to push a message from 

their “unauthorised” app server (83). 

Apple’s iCloud allegedly allowed unlimited password attempts, and thus is vulnerable to 

brute-force attacks (84). This vulnerability was apparently responsible for compromising 

several celebrities' iCloud accounts that ultimately lead to their photo leaks (85). Proof-of-

concept code to launch a brute-force attack on an iCloud service was published on August 30, 

2014 at (https://github.com/hackappcom/ibrute). The vulnerability was apparently fixed two 

days later (85). Apple denied that the incident was due to the vulnerability of iCloud services, 

and instead claimed that it was a result of “very targeted attack on user names, passwords and 

security questions,” (4). Although the photo leaks incident was about exposure of private 

data, it could have been abused to erase victim’s data stored on their mobile devices. 

Another recent high profile incident involves the unauthorised reactivation of iOS devices 

which were locked using the “Activation Lock” feature (86). This feature was introduced to 

deter theft by rendering stolen devices unusable. Unauthorised reactivation is performed by 

redirecting the iCloud connection to a spoofed iCloud server. The server can then send an 

unlock command to the locked device. Normally, reactivation requires sign-in to the iCloud 

account associated with the mobile device. The existence of a spoofed iCloud server suggests 

that the “Activation Lock” command might have been successfully reverse-engineered. Such 

a feat could theoretically also extend to replicating the remote wipe command. 

The cross-site request forgery (CSRF) (87) vulnerability was discovered in Samsung’s “Find 

My Mobile”. This vulnerability is identified as CVE-2014-8346 (88). The vulnerability 

allows unauthorised remote locking of a mobile device by sending a specially crafted link 

with an embedded remote lock command to the victim. Assuming that the victim is logged on 

to “Find My Mobile” service, when a victim clicks on the malicious link, the web browser 

would send a remote lock request, in which the service proceeds to lock victim’s mobile 

device. The attacker can customise the link to lock and change the unlock PIN, resulting in 

the victim not able to unlock their mobile device.  

The implications of unauthorised remote wipe is potentially damaging with increasing 

reliance on digital devices in modern society. For example, a journalist described that his 

“entire digital life was destroyed” when his online accounts were compromised (61). He 



reportedly lost “more than a year’s worth of photos, emails, documents, and more.” after an 

attacker remotely wiped all his devices, and could not “send or receive text messages or 

phone calls” after his Google Voice account was deleted (89). His accounts were 

compromised due to a weakness in the password reset policy adopted by a customer service 

representative. Such incidents highlighted the heterogeneity of threats in online services, and 

the fact that attack vectors are not restricted to web application flaws (90) or technical 

vulnerabilities. 

 

Summary 

 

This concludes our survey of existing proposals on remote wiping. Existing proposals 

generally do not consider securing the wipe command nor provide any mechanism to 

automatically resume interrupted wiping process. Secure deletion is seldom used on mobile 

devices. “Factory reset” serves as a simple method to remove all user data from mobile 

device. However, studies have shown that factory reset does not sufficiently remove personal 

data from mobile devices (91, 92, 93, 94, 95, 96, 97). Factory reset typically just logically 

deletes data, leaving data residue that could be forensically recovered. Secure deletion seems 

to be a clear solution to this issue, but it is actually not that straightforward due to the use of 

flash storage in mobile device. Various challenges of secure flash storage deletion and how 

existing proposals attempt to overcome them will be examined in the next section. 

 

Secure Flash Storage Deletion 

 

Secure deletion is sometimes referred to as forgotten, erased, deleted, completely 

removed, reliably removed, purged, self-destructed, sanitized, revoked, assuredly deleted, and 

destroyed in literature (43, p. 301). Before we discuss existing secure flash storage deletion 

approaches, we present an overview of flash storage. 

 

Flash Storage: An Overview 

Flash Storage Layers and Structures 

 



The process of storing new or deleting existing data by an app usually takes place over 

different layers of the OSI model as outlined in Fig. 3. For example, an app usually modifies 

data by calling the Application Programming Interface (API) function provided by the OS. 

The data modification is then processed by the file system, and in the Android environment, 

there are actually different ways for the file system to handle the data.  

Before Android version 3.0 (Honeycomb), file system accesses the flash storage through a 

memory technology device (MTD) (99). There is a built-in software flash translation layer 

(FTL) responsible for remapping logical block address to physical location (100). FTL 

emulates a normal block device such as a magnetic hard drive to enable the use of a common 

block file system (e.g. ext4 and FAT32) (101, 102). Unsorted block image (UBI) is an 

alternative interface to access flash memory, functioning as a layer on top of MTD. UBI 

implements a FTL separate from the FTL in the OS (103). In Android version 3.0, the MTD 

interface is replaced by an embedded multi-media card (eMMC) and secure digital (SD) 

device. Both eMMC and SD have integrated FTL implemented in the hardware controller, 

and therefore, software FTL is no longer necessary (102). 

Like a magnetic hard drive, the flash storage is connected via the host interface connection 

(e.g. SATA, PCI-Express, SCSI, Fibre Channel and USB). All data input/output (I/O) is 

processed by the processor regardless of the type of FTL. The processor translates binary data 

to electrical voltage to store data in the flash package.  

The structure of the flash package is as follows; each package is made up of multiple dies, 

each die consists of multiple planes, each plane comprises multiple blocks, and finally, each 

block is made up of multiple pages (101). A Page is the smallest unit of I/O operation, and 

the flash storage is accessed through the page unit (104). Each page has a spare area, known 

as out-of-band (OOB), which is used to store the error correcting code (ECC) (105). 

 

Data Overwriting in Flash Storage 

 

 Secure deletion usually involves overwriting the original data to make it 

unrecoverable (106, 107, 108, 109), and data overwriting can be performed through software 

running on the OS (110) or firmware-based such as ATA's Secure Erase (109).  

Government standards such as in the US (111) and Australia (112) recommend using ATA's 

Secure Erase command or overwrite the media at least once in its entirety. Researchers such 



as Garfinkel & Shelat (108), Joukov et al. (113) agreed that overwriting once is probably 

adequately secure, although this view is not necessarily shared by others (114). Gutmann 

(106), for example, suggested a 35-pass overwriting pattern and subsequently he clarified that 

a few passes (rather than 35 passes) should be adequate in most situations (115). Garfinkel 

and Shelat (108) also explained that Gutmann’s (106) demonstration that it is possible to 

recover data using a one-pass wipe is due to older hard drives having gaps between “tracks” 

and such gaps are not found in modern high-density magnetic hard drives. 

However, flash storage could not rely on simple data overwriting for secure deletion. FTL not 

just remaps logical block address, but also distributes write access across flash storage (116). 

In flash storage, newer data is written to another valid block while the original block is 

simply marked as “invalid” (117). This is known as an out-of-place update; whilst an in-place 

update writes new data on top of the previous. Therefore, in an out-of-place update, the 

original content is preserved even with an overwrite request. Wei et al. (107) demonstrated 

that existing single-file secure deletion tools are ineffective in securely deleting file content in 

flash storage. To truly overwrite the data, flash storage must erase the block prior to 

overwriting with new data. However, an erase operation is significantly slower than a write 

operation (118) and the number of erase operations allowed on a single block is limited, 

ranging from 10,000 to 100,000 before it becomes a bad block - a block that cannot store data 

anymore (103, 119). 

 

Classification of Secure Flash Storage Deletion  

 

In this survey, we adapt the categorisation approach proposed by Diesburg’s (45) and 

Reardon et al. (43). We broadly categorised secure deletion approaches into the user-space 

layer, the file system layer and the physical layer (Fig. 3). An alternative approach is to 

organise them into complete overwrite, random overwrite, delete sensitive, and block deletion 

(120). However, the latter approach is more appropriate in describing features provided by a 

secure deletion method. Thus, it is not suitable to classify each secure deletion method 

distinctly because each method described in this work most likely incorporates more than one 

feature. 

 



User-space Layer 

 

Spreitzenbarth and Holz (116) developed a secure deletion tool for the Symbian OS, which 

overwrites personal data (e.g. contacts, calendar entries, and SMS messages) using the OS 

API. Since the tool utilised an OS API, it can be ported to other platforms. Wear levelling 

techniques to prolong the service life of the storage media (e.g. flash memory) that have a 

limited number of erase cycles before being rendered unreliable was not considered in this 

work, and therefore, limiting its widespread adoption. 

Reardon et al. (121) developed a secure deletion tool for the Android OS that will monitor the 

amount of free space and fill it with random data. This ensures unwanted data marked as 

invalid is filled with random data to achieve random deletion. 

Albano et al. (122) proposed using standard Linux commands (e.g. cp, rm and dd) to delete 

data of interest in Android devices, without using any cryptographic primitives or kernel 

modules that will raise suspicion during a forensics analysis. The deletion process is 

summarised as follows: 

1. Copy /data partition to an external SD card. 

2. Zero the partition while deleting the data of interest on external SD. 

3. Move the remaining data on external SD back to the /data partition. 

4. Zero the external SD.  

The proposed method requires BusyBox (www.busybox.net) to be installed (which provides 

the standard Linux commands). Installing BusyBox requires the user to have root privilege, 

but such an approach will void the warranty and result in the device being vulnerable to other 

malicious threats (123). 

Kang et al. (124) proposed another method of data wiping for mobile phones, which 

overwrites only part of the data that will render it unidentifiable instead of overwriting the 

entire data. Their approach is designed only for data of the following file formats, namely; 

JPEG, BMP, FLV, DOC and XLS. 

Steele et al. (125) proposed a system to wipe several USB flash drives simultaneously. The 

system checks the pre-set status of the drive upon insertion to determine whether to wipe the 

drive. Data overwriting defaults to zero-overwriting but it is able to accommodate user-

defined patterns. The proposed system did not take into consideration wear-levelling or FTL 



since the motivation behind the publication is simply because “there is literature on the 

Internet that suggests that such recovery is possible for the dedicated hacker up to at least 10 

layers of previously written data in some versions of solid state memory”. However, we were 

unable to locate such literature. 

The secure deletion approach proposed by Jevans et al. (126) uses either overwriting with 

zeroes and ones, or cryptographic secure bit patterns. The proposed approach is designed 

with a mechanism to resume interrupted wiping after the device is subsequently powered on, 

and to ensure wear levelling. The approach described in this patent was implemented in 

IronKey’s product (www.ironkey.com/en-US). 

 

File System Layer 

 

Weng and Wu (127) proposed using data encryption for secure flash storage deletion. Each 

data block is encrypted with a key and whenever the data needs to be deleted, the key will be 

removed. This work did not mention any mechanism to securely erase the key. The proposed 

method of Lee et al. (128) has a similar concept but their method ensures that keys are stored 

in the same block using an “unbalanced binary hash tree” algorithm. Thus, a file can be 

securely deleted by erasing the file header block which deletes the key. This work has been 

patented (129). Lee et al. (130) extended their previous work (128) to include US government 

standards on data sanitisation. It will overwrite the data before erase operation whereas 

previous work only used the erase operation. This is without additional operations required in 

their previous work; and thus, the claim that the newer scheme is more secure and efficient 

than the previous scheme. The proposal by Guyot et al. (131) is also based on data 

encryption. The proposed method not only deletes the keys but includes garbage collection to 

remove duplicate keys due to wear-levelling effect. 

Reardon et al. (103) criticised the proposal by Lee et al. (128) saying that it is only 

conceptual and that if implemented it would cause too much wear on flash memory. They 

then proposed a scheme that is similar to Lee et al. (128) where each data block is encrypted 

with a key and the key is purged through an erase operation when the data is no longer 

needed. The proposed scheme encrypts each block of data with a distinct 128-bit AES key in 

counter mode. An IV (initialisation vector) is not used due to the use of a distinct key. The 

scheme is implemented in UBIFS (Unsorted Block Image File System), a log-structured file 



system that builds upon UBI and has been tested on Android. The authors conducted various 

tests including wear analysis, power consumption, and I/O performance. However, Skillen 

and Mannan (102) argued that the proposed method by Reardon et al. (103) could only work 

with memory technology device (MTD) due to dependency on the UBI.  

Sun et al. (132) proposed a hybrid secure deletion scheme that utilises two techniques; block 

cleaning and zero overwriting. Block cleaning is basically an “erase” operation (“Data 

Overwriting in Flash Storage” section). The proposed scheme calculates the cost of each 

technique before performing the secure delete and choosing the technique with a lower cost. 

There are different scenarios which can affect the cost of each technique. In block cleaning, 

any valid pages (pages that are storing valid data) residing inside blocks have to be copied 

somewhere else before erasing the block. Thus, the cost of block cleaning increases as the 

number of valid pages in a block increases. In contrast, zero overwriting can selectively 

overwrite affected pages (pages that store the data which the user wants to delete) only. Thus, 

block cleaning tends to be slower whenever large numbers of valid pages are involved since 

the operation has to copy them first. Lee et at. (130) argued that block erasure does not 

involve overwriting and therefore does not meet US government standard. Subha (133) 

further pointed out that the calculation introduces latency. 

Choi et al. (118) proposed a scheme involving password-based per-file encryption and secure 

data deletion. The proposed encryption scheme encrypts file name and file data separately. 

When the user wants to delete a particular file, the process is as follow: 

1. Write zeroes to all spaces occupied by file name, file address, and file data. 

2. Read the spaces and verify that it is “0x00”. 

3. Execute the TRIM function that allows an operating system to inform the flash 

storage that the spaces are no longer used and can be erased. 

4. Finally, erase the space(s) so that new data can be stored. 

Choi et al. criticised Truecrypt, a software-based full disk encryption, for storing secret 

information (e.g. encryption/decryption key, user’s password, and master key) while their 

proposed solution does not. The key problem with this criticism is that Truecrypt securely 

stores the master key encrypted using the header key. The header key is not stored but 

derived either from the user’s password or keyfile or both (134). This is similar to the 

proposed file encryption scheme of Choi et al., but simpler (Fig. 4). 



Choi et al. chose to use single file encryption because only important data is targeted and they 

noted that full disk encryption is significantly slower. The advantage is protection against the 

cold-boot attack (135, 136) because a user’s password and key created temporarily in RAM 

can be safely disposed after the encryption or decryption process (118). Compared to full disk 

encryption where data is encrypted and decrypted on-the-fly, the key has to be stored in RAM 

or cached somewhere else to encrypt and decrypt data. However, important data does not 

constitute just a single file but may encompass multiple files. In the proposed method, if a 

user wants to access multiple files, the user has to provide individual passwords for 

decryption of each file, which is inefficient. 

 

Physical Layer 

 

Shin (117) explored the feasibility of implementing secure deletion in different FTL schemes. 

Shin claimed that current approaches are effective but suffer from low performance due to the 

design limitation in existing FTL schemes, and suggested the need for a new FTL scheme 

that is both effective and achieves good performance. Wei et al. (107) developed a new FTL 

scheme which involves zero-overwrite of unused copies of data. The scheme works by re-

programming an unused cell to flip remaining ones to zeroes. Wei et al. cautioned that this 

approach could trigger a ‘Program Disturb’ error (i.e. memory cells that are not being 

programmed receiving elevated voltage stress). Reardon et al (121) criticised such an 

approach as reprogramming operates outside existing specification, but Wei et al. claimed 

that the ‘Program Disturb’ issue will not affect all drives.  

Qin et al. (119) also adopted a similar approach to that of Wei et al. (107) in their proposal to 

ensure traditional data overwriting is still effective. In order to mitigate the negative effect of 

reprogramming, the use of RAID-5 is suggested. Although RAID-5 is generally found in 

corporate environments, it is widely supported in consumer product without using dedicated 

RAID hardware (137, 138). Despite RAID-5 being able to provide fault tolerance, there are 

several disadvantages. For example, a typical RAID-5 setup requires at least three disks 

(139), and part of the storage capacity is allocated to store parity to achieve fault tolerance. 

Therefore, RAID-5 is not suitable for the general consumer (due to the expenses involved). 

Rather than overwriting the data to be deleted, Subha (133) proposed to render the data 

inaccessible. The error correcting code (ECC) is stored in a reserved area known as out-of-



band (OOB), and Subha proposed to overwrite certain parts of ECC to introduce a read error, 

and therefore, rendering the data that resides in the block inaccessible. This results in a faster 

secure deletion time since the size of the ECC is typical very small. However, it is yet 

unknown whether data overwritten using ECC can be subsequently accessible by the OS. 

Diesburg et al. (140) proposed TrueErase, an approach to correctly propagate secure deletion 

information across layers. The approach considered the full data-paths from user-space down 

to physical layer. Reardon et al. (43) likened this approach to a TRIM command but argued 

that TrueErase is more efficient as it can only target sensitive parts of the file instead of the 

entire file. Due to consideration of all layers involved, it is the most comprehensive approach 

but such an approach is complex to implement (141). 

Linnell (142) proposed a block erasure method whereby a block is erased by reprogramming 

all pages into zeroes, similar to Wei et al. (107). Before the block is erased, any pages still 

holding valid data (i.e. valid page) are copied to another block. However, such an approach 

was pointed out in earlier work (132) to be slower than zero-overwriting when there are a 

large number of valid pages to be copied. 

Rather than using a series of write commands from the OS or host interface, Koren et al. 

(143) proposed wiping flash storage using a single command from the host device, which will 

trigger the flash storage to wipe itself. The command can also be sent wirelessly via 

Bluetooth or infrared. Logical conditions such as higher than usual read operations can be 

used to trigger the self-wiping to mitigate unauthorised disk duplication. The proposed 

method includes a mechanism to automatically resume an interrupted wiping process 

(described in “Ensure Wiping Operation is Completed” section). After the entire flash storage 

has been wiped, the flash storage has a built-in status to indicate the process completion. 

Android Implementation 

 

According to Simon and Anderson (97), flash memory can be erased through ioctl() system 

call provided by Linux kernel. On the MTD interface, ioctl(MEMERASE) method is used to 

erase flash blocks so that they are available to store new data (144, 145). When eMMC was 

introduced to Android devices, they used ioctl(BLKDISCARD) to send “TRIM” commands to 

the flash controller. It is not considered as secure deletion because it simply marks the block 

as available for new data. ioctl(BLKSEDISCARD) was later implemented in version 4.0 (Ice 

Cream Sandwich) for secure deletion. This system call will pass “SECURE ERASE” OR 



“SECURE TRIM” to the flash controller. The flash controller would execute the “ERASE” or 

“TRIM” operation followed by “SANITIZE” (146). This is akin to ATA/ATAPI Command 

Set-2 (ACS-2) “SANITIZE BLOCK ERASE” used in the desktop drive (107).  

Table 4 summarises the deletion methods implemented throughout the history of Android as 

identified by Simon and Anderson (97). 

 

Case Study on Android Approach 

 

As noted earlier, previous studies (notably by Wei et al. (107) and Reardon et al. (43)) have 

shown that secure deletion tools operating at the user-space layer are ineffective in sanitising 

data when running on flash memory. Wei et al. claimed it was due to FTL of flash memory 

while Reardon et al. highlighted the file system design that affects the effectiveness of those 

tools. 

The secure deletion method implemented by Android in its Linux kernel is likely to be file 

system-agnostic since the OS directly instructs the flash controller to securely delete specific 

blocks. Since the flash controller is directly involved, we also assume it is a physical layer 

approach. In this section, we analyse the effectiveness of this approach in Android. Sets of 

applications and data are loaded onto the mobile devices. The mobile devices are then factory 

reset which would also securely delete user data in accordance with the appropriate Android 

version. Finally, the mobile devices are physically acquired to be analysed by forensic tools. 

The forensic tools would attempt to recover user data, and the amount of data recovered 

indicates how effective the secure deletion is. 

We performed our experiments on three mobile devices. All three devices were installed with 

different Android versions (see : Tables 9-12). Moto G was shipped with version 4.3 

Jellybean (JB) and has been upgraded to version 4.4.2 KitKat (KK). Nexus S was shipped 

with 2.3 Gingerbread (GB) and upgraded to 4.1.2 Jellybean (JB). Nexus 4 was shipped with 

4.2 JB and upgraded to 5.1 Lollipop (L). 

The mobile devices were restored to their factory image. Sets of applications and data were 

loaded onto the mobile devices. “Pre-wipe” dd physical image was then taken. Factory reset 

was then performed and “Post-wipe” image is taken. This was repeated for the other two 

devices under test in this prototype experiment. Following are the steps taken to prepare the 

data for “Pre-wipe”: 



1. Sign into Google account and connect to “unisa” wireless network. 

2. Save 30 contacts and call 10 of them. 

3. Sync email. (Emails were generated on the Google account beforehand) 

4. Install Google Drive, Dropbox, Box, & OneDrive. 

5. Download documents: 

a. 30 DOCX through Google Drive. 

b. 30 PPTX through Dropbox. 

c. 30 XLSX through Box. 

d. 30 PDF through OneDrive. 

6. Transfer following files to the mobile device: 

a. 120 JPEG pictures. 

b. 35 MP4 videos. 

c. 30 MP3 audios. 

7. Browse to 50 websites and bookmark them. 

8. Sign into Reddit (www.reddit.com) and save login. 

9. Install and sign into Facebook app. 

10. Install and sign into Skype app (except for Nexus S). 

We only acquire the /data partition (for Moto G and Nexus 4) and the /media partition (for 

Nexus S) for our experiments because the partition is used to store user data and there are 

different partition layouts depending on the Android version. Prior to Android 3.0 

(Honeycomb), /data and /media are two separate partitions. On Honeycomb or later, /media 

is no longer a dedicated partition; instead, it becomes a folder /data/media in /data partition. 

Even though our Nexus S is equipped with JB, because it was originally shipped with GB, the 

previous partition layout is still retained. 

Four forensic tools are used to perform data recovery on all physical images acquired, 

namely: UFED Physical Analyzer (v4.1 Trial), Internet Evidence Finder (IEF v6.5 Trial), 

PhotoRec (v6.14), and Scalpel (v2.0). Scalpel is conFig.d to recover JPEG thumbnail only 

(see (147) for detailed information on the recovery technique). “Pre-wipe” physical images 

serve as a baseline to verify capability of these forensic tools. 

Results are shown in Appendix: Tables 9-12 indicating the number of files recovered. Our 

results are consistent with Table 4. Since the Android version running on Nexus S (JB) is 

using an insecure deletion method on media partition (ioctl(BLKDISCARD)), significant user 



data can be recovered. This result is consistent with previous studies that have highlighted the 

issue of factory reset in Android being ineffective in sanitising user data. In contrast, the 

result suggests that if a secure deletion method (ioctl(BLKSEDISCARD)) is supported (in the 

case of Moto G and Nexus 4), user data can be sufficiently sanitised. Even when some results 

for Moto G and Nexus 4 are more than zero, which implies some data could be recovered, 

upon more inspection, we determined that the recovered data is false positive. Also note that 

although the deletion method of Lollipop used by Nexus 4 is not known, we assume it is 

either similar or perhaps more secure to KK. 

Our preliminary results suggest that the secure deletion method implemented by Android can 

sufficiently sanitise user data. However, it might not be applicable to other mobile device as 

proper hardware implementation is also required, as evidenced by Simon and Anderson (97). 

In addition, the data acquisition and recovery aspects could be limitations of our experiments. 

With respect to data recovery, our experiments could be limited by the capability of our 

forensic tools. This is despite the UFED Physical Analyzer and the Internet Evidence Finder 

being commercial forensic tools commonly used by forensic investigators. Manual 

scrutinisation could be topics for future work. With respect to data acquisition, even though 

we use dd - a very popular physical data acquisition tool, it operates at the user-space layer 

which might be hindered by FTL. Future study could use a data acquisition tool that is able to 

bypass FTL (e.g. custom hardware used by Wei et al. (107)). We could also review how 

viable such an approach is to an adversary. 

Discussion 

 

We now discuss the various limitations that we found in existing approaches before 

summarising this section. 

 

Limitations of Existing Literature 

 

Lack of Data Recovery Evaluation 

 

It is clear that most existing approaches focus on data recoverability testing, but there is a 

lack of data recovery evaluation particularly at the file system and physical layers. 

Almost all existing approaches had limited evaluations to determine their suitability (i.e. one 

experiment per device in most proposals) which brings into question whether the approach 



can be widely deployed over the wide range of mobile devices. For example, Wei et al. (107) 

argued that different flash storage media could exhibit different behaviours and, therefore, 

conducted tests on a wide range of commercially available consumer hardware. In addition, 

the findings are dated, many of the devices tested such as HTC Nexus One are either 

discontinued or no longer available. Therefore, findings from Albano et al. (122), Reardon et 

al. (121), Reardon et al. (103) and others may no longer be applicable to newer devices and 

OS. 

 

Limitation of Using Simulation in Evaluations 

 

A number of proposals were evaluated in the simulated environment (119, 133). While there 

are advantages in using a simulated environment such as a mobile emulator (e.g. ease of use, 

without the need for a custom-build hardware platform, and the ability to evaluate an 

expensive or yet to be available commercial flash technology as outlined by Grupp et al. 

(148)), simulation results are likely to be less reliable than actual hardware-based evaluations; 

hence, limiting our understanding of the resulting real-world implications (149). 

Performance 

 

Modification at the hardware-level does not necessarily mean modifying the flash memory 

cell or the processor of the SSD controller. Rather, in this paper, it refers to the modification 

of the software or the firmware running at the physical level. Thus, the software-based 

approach referred to in Table 7 is implemented above the physical level, namely the file 

system and user-space layers. 

 

Software-based implementation generally has a lower throughput due to the number of layers 

involved; whilst a hardware-based implementation operates on the disk’s firmware which 

allows it to run at the disk’s full bandwidth (150). For instance, software-based full disk 

encryption (FDE) generally impacts on the disk’s performance even in flash storage (151). 

Possible Attacks  

 

A hardware-based secure deletion approach can perform erasure on all memory blocks (107), 

but a software-based solution may not be able to access some of the blocks. ATA’s Secure 

Erase function is the most commonly available hardware-based secure deletion method, 



which can be found in most drives manufactured on or after year 2001. However, researchers 

such as Wei et al. (107) and Swanson & Wei (152) found that some drives either fail to 

complete the deletion process required in the Secure Erase function or do not erase the data at 

all after executing that function. 

Data can also be protected using encryption, such as hardware-based drive encryption (also 

known as self-encrypting drive – SED). Müller et al. (153) proposed a hot plug attack, where 

an adversary is able to gain unauthorised access to the data residing in the SED. In short, this 

is due to the fact that when using the SED, a user unlocks the drive when powering on the 

machine. After the disk is unlocked, and while the disk is still running (“hot”), an adversary 

simply re-plugs the SATA cable from the original machine to the adversary’s machine to 

access the SED without knowing the password. An adversary can also access the drive 

directly by attaching a USB drive into the original machine if it is not screen locked. 

To ensure high security compliance, there are several industry standards for SED, such as 

Opal Security Subsystem Class (Opal SSC) by Trusted Computing Group (TCG) (154) and 

“Encrypted Hard Drive” (eDrive) by Microsoft (155). The latter, for example, is partly based 

on Opal SSC and IEEE 1667 (156). Major SED manufacturers offer OPAL-compliant 

products (153, 157, 158, 159). Müller et al. (153) did not evaluate Opal-compliant SEDs, but 

claimed that the hot plug attack affects such drives too. Since then, there had been no major 

revision to the Opal SSC standard, and it is unknown whether such an attack claimed by 

Müller et al. is valid. 

On the other hand, software-based disk encryption may be vulnerable to a cold boot attack 

(135; 136) because the encryption key is cached in RAM. In such an attack, an adversary 

removes the RAM, re-plugs into another machine, and extracts the key from the RAM. Such 

an attack is, however, difficult to carry out and can be mitigated by keeping the key outside 

of RAM (160). In addition, software-based disk encryption does not encrypt the boot sector. 

Therefore, an adversary is able to launch an evil maid attack (161) by installing a bootkit 

(boot sector rootkit) into the victim’s machine to capture the password entry. Another form 

of evil maid attack can be launched against hardware-based disk encryption. In this case, an 

adversary removes the victim’s disk and replaces it with another disk loaded with the 

adversary’s modified OS designed to capture the password entry (153, 162). In this case, it 

can be thwarted using ATA’s password. The evil maid attack is possible in either software-



based or hardware-based systems due to a lack of a trusted boot environment (163) to 

authenticate the boot sector or the disk to the user (162).  

Summary  

 

Table 7 summarises the key differences between hardware- and software-based 

implementations of secure flash storage deletion. 

The advantage in using a software-based approach is that it allows for easy verifiability. For 

example, if the source code is available, then a public security audit can be conducted using 

forensic techniques as demonstrated on TrueCrypt (134). Hardware-based verification may 

require not only building a customised platform to access the memory directly but also 

dismantling the device (152). 

Modification on the hardware level can be very challenging, as one would generally require 

having access to the source code of the firmware or the specification of the disk controller. It 

may be possible to replace the firmware, but there is the risk of bricking the device. Software-

based solutions have a lower risk of damaging the hardware. Software-based modification, 

especially at the file system layer, usually builds on an existing open source file system. The 

improvement can be implemented simply by installing a new patch. Even in the case of a new 

software component, existing data can be migrated with relative ease.  

In addition, software-based modification is generally hardware independent. Implementation 

at the hardware-level, however, may require compatibility at the higher layers. The user 

would need to install new software, for example to support Opal SSC (164), and acquire new 

hardware. For example, in Intel SED, the drive is encrypted by default using the unique key 

generated during manufacture (165). It is activated simply by using the drive. This 

mechanism could only protect in a situation where the NAND chip has been removed, 

assuming that the key is not stored in the NAND chip or the location is only known to the 

controller. Thus, SED behaves more like a “self-decrypting disk” (153) in the default 

configuration. To protect the drive, the user would need to set the ATA password which 

controls access to the drive, and consequently the data. This mechanism requires ATA 

specification compatibility. Although the majority of consumer hard drives use a Serial ATA 

(SATA) interface, there are drives that utilise SCSI/SAS, Fibre Channel, or PCIe host 

interfaces. 



Some new hardware-based features require installation of new hardware which is a more 

expensive option. In the software-based approach, a user can take advantage of new features 

via software updates.  

 

Concluding Remarks 

 

We have examined (the limited) literature on remote wiping, particularly secure deletion on 

flash storage. Despite the prevalence of remote wiping, most existing literature provided a 

high-level approach to remote wiping and secure data deletion. There are relatively few 

technical papers evaluating the implementation of such approaches or techniques on a wide 

range of popular mobile devices. One reason that this may not have been thoroughly explored 

is due to the cost and efforts associated with such evaluations.  

In addition to conducting a comparative summary of existing approaches, we identified 

existing limitations and the research trends over the years (see Table 8). 

As shown in Table 8, the majority of remote wiping patents were filed prior to 2010, although 

academic interest on the topic appears to have increased since then. A similar trend was 

observed with secure flash storage deletion, where there are at least three publications 

annually since 2010.  

This review highlights a number of literature gaps which are as follow: 

1. The need to provide message confidentiality using encryption and ensure that the 

wiping process cannot be interrupted. From our survey described in “Reviews of 

Remote Wiping and Secure Flash Storage Deletion” section, existing proposals 

generally do not consider securing the wipe command (“Secure Wipe Command” 

section) nor provide any mechanism to automatically resume an interrupted wiping 

process (“Ensure Wiping Operation is Completed” section). 

2. The need for comprehensive evaluations on the security and effectiveness based on 

real-world implementations of remote wiping. It is essential to ensure that the remote 

wiping command cannot be hijacked by attackers (e.g. to prevent the wiping of lost or 

stolen devices) or initiated by attackers (e.g. to remotely wipe contents from a 

victim’s device) and wiped data cannot be recovered using contemporary forensic 

techniques. 



3. Real world implementations that mitigate identified shortcomings. 

4. The need for evaluation of physical layer implementation on actual hardware. As 

discussed in “Limitation of Using Simulation in Evaluations” section, evaluations of 

existing hardware-level research on flash storage are generally conducted with a 

simulator. The findings may not take into consideration internal workings of the flash 

storage (as manufacturers may be hesitant to provide such information to protect their 

intellectual property) (149, 152). To overcome this limitation, Diesburg et al. (140) 

suggested using OpenSSD (166), a research platform designed for flash storage 

research. There are also a few alternative platforms, such as FRP (167), BlueSSD 

(168), and Ming II (169). These open platforms allow researchers to have unfettered 

access to the hardware especially the FTL, which is not possible on commercial flash 

storage.  

5. The need for stronger collaboration between manufacturer and academic researcher. 

In this review, we highlighted the importance of FTL as a vital factor in secure flash 

storage deletion. For instance, Diesburg et al. (140) acknowledged their work is only 

possible with access to software FTL and pointed out the trend of hardware FTL in 

recent times. For example, newer Android versions have started utilising hardware 

FTL (“Flash Storage Layers and Structures” section). Since hardware FTL is not 

accessible in commercial hardware or the open research platforms mentioned earlier, 

any research or evaluation on FTL could not be conducted without the involvement 

and collaboration of a manufacturer. Therefore, it is argued that a stronger 

collaboration between manufacturer and academic researcher will result in a more 

secure product. Researchers can work with Open NAND Flash Interface (ONFi), a 

consortium of flash memory manufacturers, to incorporate a secure deletion method 

into the ONFi specification to facilitate wider adoption. 

Does stronger security hinder law enforcement? Stronger security of remote wiping 

mechanisms can help protect the privacy of the consumer. However, such a benefit could also 

be abused by criminals to remove incriminating evidence (170, 171). In addition, law 

enforcement have explained that they could not extract useful evidence from mobile devices 

due to storage encryption (172, 173, 174), particularly in the post NSA revelations as mobile 

device vendors and other technology companies enforce encryption by default in their 

products (175, 176). Whether such a trend really does hinder law enforcement is the subject 

of controversy and, perhaps, worthy of discussion. For example, how do we balance the need 



for user privacy with the legitimate needs of government and law enforcement agencies to 

access data to facilitate their investigations? 
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lo  et 

al. 

(48) 

Brow

n et 

al. 

(49) 

Walk

er & 

Fyke 

(50) 

Kenn

ey 

(51) 

Hase

be 

(52) 

Senn

ett & 

Daly 

(53) 

Onyo

n et 

al. 

(54) 

Gajd

os  & 

Kretz 

(55) 

Yu et al. 

(56) 

Park 

et al. 

(57) 

Kuppusa

my et al. 

(58) 

Joe 

& 

Lee 

(59) 

Adusum

alli (60) 

Authentic

ate 

reporter 

Y Y Y Y Y Y N Y Y Y Y Y N 

Authentic

ate origin 

of wipe 

command 

Y Y N N N Y Y Y Y N Y N N 

Secure 

wipe 

command 

N Y N N N N N N N N N N N 

Transmiss

ion 

channel 

Inter

net 

Inter

net 

Cellu

lar 

Cellu

lar 

Inter

net 

Cellu

lar 

Inter

net 

Inter

net 

Cellular 

(Emerge

ncy call) 

Cellu

lar 

(SMS

) 

Cellular 

(SMS) 

Inter

net 

Cellular 

(SMS) 

Secure 

delete 

N Y N N N Y Y Y Y N N N N 

Ensure 

wiping 

operation 

is 

completed 

N Y N N N N N N Y N N N N 

Acknowle

dge 

source 

that wipe 

is 

completed 

N N N Y N N N Y N N N Y Y 

Replay 

attack 

mitigation 

Y N N N N N N N N Y N Y N 

 

 

 

 

 



 

TABLE 2—Authentication methods in the existing remote wiping literature. 

 Biometrics Certificate Password Secret 

question 

Username and 

password 

Identification 

information 

Angelo et al. (48) ●   ●   

Brown et al. (49)       

Walker & Fyke (50)   ●    

Kenney (51)    ● ●  

Hasebe (52)   ●    

Sennett & Daly (53)     ●  

Onyon et al. (54)       

Gajdos & Kretz (55)     ●  

Yu et al. (56)   ●   ● 

Park et al. and Kuppusamy et al. 

(57, 58) 

  ●    

Joe & Lee (59)  ●   ●  

Adusumalli (60)   ●    

 

 

 

 

 

 

 

 

 

 

 

 



 

TABLE 3—Summary of methods used to authenticate origin of wipe command. 

 Public key 

cryptography 

Shared code / 

password 

Incoming 

number 

Angelo et al. (48) ●   

Brown et al. (49) ● ●  

Sennett & Daly (53)  ●  

Onyon et al. (54) ● ●  

Gajdos & Kretz (55) ● ●  

Yu et al. (56)  ●  

Kuppusamy et al. 

(58) 

  ● 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



TABLE 4—Deletion method of factory reset in AOSP (adapted from Simon and Anderson 

(97)). 

 

  Android version 

Code Partition Froyo GB 4.0.x (ICS) JB KK 

Android media format() ioctl(BLKDISCARD) 

External SD None 

Recovery data ioctl(MEMERASE) ioctl(BLKDISCARD) ioctl(BLKSEDISCARD) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

TABLE 5—Device specification. 

Device Motorola Moto G Samsung Nexus S LG Nexus 4 

Model XT1033 GT-I9020T LGE960 

Android OS 4.4.2 4.1.2 5.1 

Android 

Build 

KXB20.25-1.31 JZO54K LMY47O 

Linux kernel 3.4.0 3.0.31 3.4.0 

Storage 8 GB 16 GB 8GB 

RAM 1 GB 512 MB 2 GB 

 

 

 

 

 

 

 

 

 

 

 

 

 



TABLE 6—Comparative summary of existing secure deletion techniques. 

 

Technique Advantages Disadvantages Evaluation criteria / 

claimed features (for 

approaches without an 

experiment) 

Research set-up 

User-space   

Spreitzenbart

h & Holz 
(116) 

 Simple to 
implement. 

 No OS 
modification 

required. 

 Cross-platform. 

 Does not 
provide wear-

levelling. 

 Limited data 
type support. 

 Data 
recoverability 

 Experiment 
using Nokia E90 

(Symbian 

9.2)/S60 
platform 

Reardon et al. 

(121) 
 Data type 

agnostic. 

 Provides wear-

levelling. 

 Excessive 

writes or wear 
on storage. 

 Slow 

 Effects of 

different 

parameter on 

deletion latency 

and lifetime. 

 Battery 

consumption. 

 HTC Nexus One 

Albano et al. 

(122) 
 Simple operation. 

 Data type 
agnostic, 

 No OS 
modification 

required. 

 Does not 

provide wear-
levelling. 

 Works on 
Android or any 

Linux-based OS 

only. 

 Requires root 

and Busybox 
installed on 

Android. 

 Slow. 

 Data 

recoverability 

 HTC Nexus One 

(MIUI ROM 
based on 

Android v2.3.4) 

Kang et al. 

(124) 
 Efficiency as only 

parts of data needs 
to be overwritten. 

 Does not 

provide wear-
levelling. 

 Limited data 

type support. 

 Data 

recoverability 

 Deletion time 

 Samsung 

Galaxy S3 

Steele et al. 

(125) 
 Wipe several USB 

flash drives 

simultaneously. 

 Questionable 

motivation behind 
the proposal. 

 Does not 

address wear-

levelling. 

NA NA 

Jevans et al. 

(126) 
 Resume 

interrupted 

wiping. 

 Limited wear 
levelling. 

NA NA 

File system   

Weng & Wu 
(127) 

 Only small data 
(key) needs to be 

deleted. 

 No mention of 
secure deletion 

for keys. 

NA NA 

Lee et al. 
(128) and 

Park et al. 

(118) 

 Encryption keys 
are arranged 

closely for faster 
delete operation. 

 Excessive wear 
on flash storage. 

 Conceptual (yet 
to be 

implemented / 

evaluated). 

 Amortized 
number of 

block erase 

 No experiment 
conducted 

Lee et al. 

(130) 
 Incorporate US 

government 

standards 

 More efficient 

than (89) and 
introduce less 

wear on flash 

storage. 

 Conceptual (yet 

to be 

implemented / 
evaluated).   

 Amortized 

number of 

block erase 

 No experiment 

conducted 

Guyot et al. 

(131) 
 Method to remove 

duplicates of 

deleted data 
provided. 

 Latency of 

garbage 

collection 
operation. 

NA NA 

Reardon et al. 

(103) 
 Can be modified 

into full disk 
 Designed for 

UBIFS, a file 
 Execution time 

for various file 

 HTC Nexus One 
(Linux 



Technique Advantages Disadvantages Evaluation criteria / 

claimed features (for 

approaches without an 

experiment) 

Research set-up 

encryption for 

confidentiality. 

system not 

found in 
Android but 

supported by 

the Linux 
kernel. 

 Depends on 
now defunct 

MTD 

system 

functionality 

(e.g. 

mount/unmount

, read/write) 

 Power 
consumption 

v2.6.35.7) 

Sun et al. 

(132) 
 Hybrid scheme 

which chooses 

faster method by 

evaluating the 
nature of data 

location. 

 Latency during 
cost calculation. 

 Time taken to 
complete 

various 

workloads. 

 Embedded 
board 400MHz 

Intel XScale 

CPU, 64MB 
SDRAM, 64MB 

Samsung 

NAND flash 
memory. 

Choi et al. 

(118) 
 Compatibility with 

TRIM 

 Verify the data has 

been overwritten 

 Additional 

operations 
increase 

deletion time. 

NA NA 

Physical   

Wei et al. 

(107) 
 Almost native 

performance 

 May result in 

writing error. 

 Possible 

violation of 

flash storage’s 
specification. 

 Write latency 

 Secure deletion 
latency on 

different flash 

storage and 
applications 

 Custom-built 

FPGA-based 
flash testing 

hardware on 16 

chips spanning 6 
manufacturers, 5 

technology 

nodes covering 
both MLC and 

SLC chips 

Qin et al. 

(119) 
 Use RAID-5 to 

mitigate negative 

effect of 

reprogram. 

 Require 
multiple drives 

for RAID; thus 

not cost-
effective / 

suitable for 

general 
consumer 

usage. 

 Read/write 
response time 

 Simulator 
SSDsim 

Subha (133)  Least data to be 
affected thus very 

fast deletion time. 

 Access to ECC 
is questionable. 

 Deletion time  C program 
running on 

Linux file 

system to 
simulate ECC, 

with a Rich Text 
File (RTF) as 

input data. 

Diesburg et 

al. (140) 
 Most 

comprehensive 

approach 

 Complex to 
implement 

6. Data 

recoverability 

 Disk 

performance 

SanDisk’s DiskOnChip 

with Inverse NAND 

 File Translation 

Layer (INFTL) 
kernel module 

on Linux 

2.6.25.6 

Linnell (142)  FTL 

compatibility. 

 Slower than 

simple zeroes 

overwriting in 

some cases. 

NA NA 

Koren et al. 

(143) 
 Erase operation is 

independent from 

host device (OS 

and motherboard). 

 Resume 

interrupted 
wiping. 

 Does not 
provide wear-

levelling 

NA NA 

 



 

 

TABLE 7—Key differences between hardware- and software-based implementations 

(Adapted from Choi et al. (118)). 

 

 Hardware-based approach Software-based approach 

Performance Generally higher Slower 

Security issue ‘Hot plug’ attack ‘Cold boot’ and related attacks 

Verifiability Difficult Possible 

Ease of implementation Hard Easy 

Cost High Low 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

TABLE 8—Remote wiping and secure flash storage deletion publications by research focus. 

Publications Years Research focus 

Angelo et al. (48), Kenney (51), Hasebe (52) 1999-2005 Remote wiping 

Onyon et al. (54), Gajdos & Kretz (55) 2006-2010 

Brown et al. (49), Park et al. (57), Joe & Lee (59) 2011 

Kuppusamy et al. (58) 2012 

Walker & Fyke (50) 2013 

Yu et al. (56), Adusumalli (60) 2014 

Sun et al. (132), Jevans et al. (126), Koren et al. (143) 2006-2008 Secure flash storage 

deletion Spreitzenbarth & Holz (116), Steele et al. (125), Lee et 

al. (128), Subha (133) 

2009-2010 

Wei et al. (107), Albano et al. (122), Lee et al. (130) 2011 

Linnell (142), Reardon et al. (121), Weng & Wu (127), 

Park et al. (129), Guyot et al. (131) 

2012 

Reardon et al. (103), Qin et al. (119), Kang et al. (124) 2013 

Choi et al. (118) 2014 

 

 

 

 

 

 

 

 

 



 

TABLE 9—Recovered data by Cellebrite. 

Cellebrite Moto G 

  

Nexus S 

  

Nexus 4 

  

Data types Pre-wipe Post-wipe Pre-wipe Post-wipe Pre-wipe Post-wipe 

Call log 12 0 0 0 10 0 

Chats 0 0 0 0 0 0 

Google Talk 1 0 0 0 0 0 

Hangouts 2 0 0 0 2 0 

Kik 2 0 0 0 1 1 

Contacts 31 0 0 0 31 0 

Cookies 516 0 0 0 20 0 

Emails 45 0 0 0 2 0 

Installed 

applications 

41 0 0 0 49 0 

Passwords 6 0 0 0 6 0 

Powering Events 1 0 0 0 3 0 

Searched items 1 0 0 0  0 

SMS 1 0 0 2 3 0 

Timeline 718 0 0 2 172 0 

User accounts 9 0 0 0 9 0 

Web bookmarks 50 0 0 0 50 0 

Web history 57 0 0 0 40 0 

Wireless networks 1 0 0 0 1 0 

Data Files 0 0 0 0  0 

Applications 434 3 0 0 381 0 

Audio 31 0 32 0 32 0 

Databases 226 1 0 0 178 0 

Documents 180 0 213 0 181 0 

Images 1910 0 756 0 1363 0 

Text 362 2 1 0 289 0 

Videos 35 0 35 0 35 0 



Carved Images 1375 2 6238 2759 966 0 

Activity analytics 58 0 0 0 36 0 

Analytics emails 0 0 0 0 0 0 

user email 3 0 0 0 4 0 

Uncategorized 19 0 0 0 0 0 

Analytics phones 32 0 0 0 30 0 

Skype 1 0 0 0 1 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

TABLE 10—Recovered data by IEF. 

IEF Moto G 

  

Nexus S 

  

Nexus 4 

  

Data type Pre-

wipe 

Post-

wipe 

Pre-

wipe 

Post-

wipe 

Pre-

wipe 

Post-

wipe 

Google Analytics First Visit Cookies 23 0 0 0 0 0 

Google Analytics Referral Cookies 23 0 0 0 0 0 

Google Analytics Sessions Cookies 23 0 0 0 0 0 

Google Analytics URLs 33 0 0 0 0 0 

Google Searches 1 0 0 0 0 0 

Social Media URLs 107 0 0 0 2 0 

Chat 0 0 0 0 0 0 

Skype accounts 1 0 0 0 1 0 

Skype Contacts 2 0 0 0 2 0 

Skype IP Addresses 0 0 0 0 2 0 

Chat 0 0 0 0 0 0 

Google Drive 2 0 0 0 4 0 

Documents 0 0 0 0 0 0 

Excel 36 0 36 7 36 0 

PDF 38 0 30 30 36 0 

PowerPoint 60 0 60 30 60 0 

Text 77 0 0 0 22 0 

Word 60 0 30 30 60 0 

Media 0 0 0 0 0 0 

Carved video 52 0 41 38 43 0 

Pictures 17946 2 8202 7682 14321 0 

Videos 35 0 35 0 35 0 

Web related 0 0 0 0 0 0 

Browser Activity 368 0 0 0 20 0 

Chrome bookmarks 0 0 0 0 50 0 

Chrome cookies 516 0 0 0 20 0 

Chrome favicons 63 0 0 0 39 0 



Chrome logins 2 0 0 0 2 0 

Chrome top sites 1 0 0 0 40 0 

Chrome web history 55 0 0 0 40 0 

Chrome web visits 108 0 0 0 1 0 

Chrome/360 Safe Browser/Opera 

Carved web history 

171 0 0 0 0 0 

Firefox web history 10 0 0 0 13 0 

Google Analytics First Visit Cookies 37 0 0 0 0 0 

Google Analytics Referral Cookies 25 0 0 0 0 0 

Google Analytics Sessions Cookies 41 0 0 0 0 0 

Google Analytics URLs 33 0 0 0 0 0 

Google maps 18 0 0 0 10 0 

Google maps tiles 22 0 0 0 0 0 

Safari history 0 0 0 0 9 0 

 

 

 

 

 

 

 

 

 

 

 



 

TABLE 11—Recovered data by PhotoRec. 

PhotoRec Moto G 

  

Nexus S 

  

Nexus 4 

  

Data type Pre-wipe Post-wipe Pre-wipe Post-wipe Pre-wipe Post-wipe 

docx 47 0 0 0 53 0 

http cache 5 0 0 0 31 0 

jar 13 0 0 0 9 0 

java 17 0 39 39 95 0 

jpg 538 0 460 460 459 0 

mp3 30 0 373 373 34 0 

ogg 3 0 2 2 4 0 

pdf 15 0 6 6 18 0 

png 101 0 49 49 372 0 

pptx 20 0 1 1 23 0 

sqlite 9339 7 1 1 178 0 

txt 500 0 811 811 2577 2 

xlsx 7 0 1 1 4 0 

zip 15 0 3 3 4 0 

. 

 

 

 

 

 

 

 



 

TABLE 12—Recovered thumbnail by Scalpel. 

 

Scalpel Moto G 

  

Nexus S 

  

Nexus 4 

  

 Pre-wipe Post-wipe Pre-wipe Post-wipe Pre-wipe Post-wipe 

No. of thumbnails recovered 885 0 564 564 664 0 

 

  



FIG. 1—General overview of the remote wiping process  

Legend: (a) Authenticate reporter 

 (b) Authenticate origin of wipe command 

 (c) Secure wipe command 

 (d) Transmission channel 

 (e) Secure delete 

 (f) Ensure wiping operation is completed 

 (g) Acknowledge source that wipe is completed 

 (h) Replay attack mitigation 

 

  



FIG. 2—Push messaging architecture. Adapted from (67, 70) 

 

  



FIG. 3—Data access layers in flash storage. (Adapted from 43, 98) 

 

  



FIG. 4—Decryption process in Truecrypt and Choi et al. (118). 
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